论文部分内容阅读
环氧树脂由于其粘接强度高、固化收缩率低,广泛应用于武器装备部段胶接装配等领域。为了满足武器型号对中低温固化高温高韧环氧胶粘剂的迫切需求,本文从高韧性聚醚胺固化剂分子结构和胶粘剂配方设计出发,开展环氧树脂中低温固化机理研究,进一步建立胶粘剂结构与性能之间的关系。首先,从分子基元反应出发,通过酰胺化反应,以氢化二聚酸和均苯三甲酸两种多元酸与二乙二醇二(3-氨基丙基)醚为原料,获得了含脂肪环的双臂聚醚胺固化剂(DAPE)和以苯环为中心的三臂聚醚胺固化剂(TAPE),通过红外光谱(FTIR)、核磁共振氢谱(1H NMR)和核磁共振碳谱(13C NMR)等方法确认了产物的化学结构。进一步,将DAPE和TAPE与4,4’-二氨基二苯甲烷环氧树脂(AG-80)、4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯(TDE-85)、对氨基苯酚环氧树脂(AFG-90)、海因环氧树脂(HER)四种高性能环氧树脂匹配,开展固化反应动力学研究,全面探究固化反应机理。研究发现DAPE和TAPE固化体系起始固化反应温度低,具有良好的反应活性。非等温DSC法研究表明DAPE和TAPE固化体系均符合SB(m,n)模型,并且非自催化反应在TAPE体系固化过程中作用效果更小。等温DSC法研究表明Kamal自催化模型可以很好地模拟AG-80/DAPE体系的等温固化过程。此外,TDE-85/TAPE体系的DSC曲线呈双放热峰,Friedman法研究表明该现象由TDE-85树脂中缩水甘油酯末端环氧基团和与环己烷相连的环氧基团反应活性相差较大导致。通过在线FTIR法探究固化制度及反应过程中的化学结构变化,结果表明在外推法得到的固化制度下,DAPE和TAPE体系可以完全固化,反应过程中910 cm-1处环氧基团的特征峰强度下降,3300 cm-1左右处羟基和胺基重合峰峰强度上升。最后,为了建立胶粘剂分子结构、固化物结构与胶粘剂宏观性能之间的关系,优选DAPE和TAPE与AG-80和TDE-85四种体系,研究其固化行为、力学性能、粘接性能和热稳定性,并与市售D230固化剂进行对比。研究发现,DAPE和TAPE体系固化速度显著提升,凝胶时间大幅下降。对AG-80和TDE-85两种环氧树脂体系,与D230固化体系相比,DAPE固化物断裂伸长率显著提升,但是拉伸强度下降较为明显,TAPE固化物在断裂伸长率提高的前提下,拉伸强度基本不变。采用SEM观察拉伸试样断面,D230固化体系断面较为光滑,DAPE和TAPE固化体系断面形貌粗糙,呈致密的河流状花纹。进一步表征其粘接性能,DAPE和TAPE体系的室温及150℃拉剪强度较D230体系有不同程度上升。采用DMA表征固化物的交联密度和玻璃化转变温度,结果显示TAPE固化物的玻璃化转变温度与D230基本一致,DAPE固化物的玻璃化转变温度显著下降,这与DAPE和TAPE固化物低交联密度有关。热失重测试表明三种固化剂体系的5%热降解温度(T5%)基本持平,DAPE和TAPE体系的30%热降解温度(T30%)和统计学耐温指数温度(Ts)优于D230体系,具有良好的耐热性。