论文部分内容阅读
随着人类社会的不断发展,对能源的需求日益增长。化石燃料目前仍然是人类的主要能源,一方面其储量有限,能源危机始终是亟待解决的问题,另一方面大量排放的CO2及其他污染物引发了一系列环境与气候问题。太阳能理论上是无限的,也是清洁能源的重要组成部分。利用太阳能将CO2和H2O转化为太阳能燃料,将太阳能转化为化学能储存起来并加以利用,可以同时解决能源与环境问题,是未来能源的发展方向。本课题组提出的光热协同制备太阳能燃料是一种基于能量分级分质利用思想的方法,发展前景光明。光热协同材料的设计与制备是提高系统效率的关键,本论文探究了多种氧化物材料的性能,尝试寻找合适的循环材料。利用溶胶凝胶法制备了TiO2和不同比例Mn掺杂的TiO2材料,CO2分解实验结果表明1.0 wt%掺杂比例的样品效果最好,掺杂量更多或更少都会导致CO产量减少,但仍高于纯TiO2的产量。掺杂Mn离子在TiO2的禁带中引入了杂质能级,扩大了光吸收范围,同时Mn离子可以俘获电子,促进光生电子空穴的分离,但随着Mn的掺杂量增加,Mn离子反而会成为复合中心,不利于氧空位生成。DFT计算表明,Mn的掺杂降低了TiO2的氧空位形成能。利用水热法和离子交换法制备了ZnO、Zn2GeO4、ZnGa2O4纳米材料。实验结果表明,ZnO的效果与P25型TiO2相当,为2.2?mol·g-1;Zn2GeO4和ZnGa2O4材料具有优秀的光热协同分解CO2性能,其中Zn2GeO4效果最好,平均CO循环产量为9.52?mol·g-1,是P25的4倍。XPS结果表明光照期间在Zn2GeO4和ZnGa2O4样品中产生了较多的氧空位,并在热反应结束后氧空位恢复,上述氧化物在循环过程中反应机理与TiO2类似。进一步设计并制备了ZnO/Zn2GeO4异质结以拓宽Zn2GeO4材料的光谱响应范围,提高能量转化效率。光热协同实验显示,复合体系材料平均CO产量达到12.40?mol·g-1,高于单一的氧化物材料,并且具有良好的循环稳定性。通过XRD、TEM及EDS线扫测试证明了异质结的成功构建,UV-Vis DRS和PL光谱表明Z/ZGO材料光响应及光生电子空穴分离效果良好,利于光致氧空位的产生。