【摘 要】
:
为加快我国能源转型,热电联产机组越来越受到重视,母管制作为热电联产机组主要的运行方式之一,以其高可靠性和运行灵活性广泛应用于中小型热电联产机组。目前针对母管制机组建模与控制展开研究的文献中,均存在研究对象组成结构简单,对母管动态特性认识不足的问题,且相较于单元制机组,母管制机组的母管压力是极其重要的被控量,但由于多炉多机、多根母管间的相互作用,呈现大惯性、强耦合、非线性等问题,常规的控制方法很难取
论文部分内容阅读
为加快我国能源转型,热电联产机组越来越受到重视,母管制作为热电联产机组主要的运行方式之一,以其高可靠性和运行灵活性广泛应用于中小型热电联产机组。目前针对母管制机组建模与控制展开研究的文献中,均存在研究对象组成结构简单,对母管动态特性认识不足的问题,且相较于单元制机组,母管制机组的母管压力是极其重要的被控量,但由于多炉多机、多根母管间的相互作用,呈现大惯性、强耦合、非线性等问题,常规的控制方法很难取得满意的控制效果。为此,本文以九炉六机双母管制机组为研究对象,通过动态建模、协调控制及负荷优化分配等研究,揭示了多炉多机耦合下的动态运行规律,并提出了有效的协调控制方案,为母管制热电联产机组的设计和运行提供了重要参考。论文首先基于模块化的思想,采用机理与经验结合的建模方法,建立了能反映变工况特性的九炉六机双母管制供热机组整体动态模型。之后对所建模型进行验证,一方面将建立的模型与既有文献进行动静态对比,另一方面通过定量和定性的方法分析了系统内各参数的变化情况,证明了其合理性。最后进行动态特性分析,深入分析了其动态机理和产生原因,特性表明母管压力的主要影响因素是满足“就近原则”的距离因素、锅炉、汽机和母管的阻力特性以及炉机间相互影响程度。论文深入研究了热电耦合下的母管压力协调控制问题,提出了两种解决方案,一是基于“锅炉跟随母管压力”的改进PID控制方案,该方案通过热电解耦,设计非线性PID和前馈信号补偿了大滞后、非线性和强耦合的问题;二是基于扩增状态观测器的多模型预测控制协调方案(GSEOMMPC),该方案采用扩增状态观测器方法对子系统间的外扰作用估计后作为前馈信号输入多模型预测控制器中。仿真结果表明两种方案在满足电热负荷的同时,可以在允许范围内保持母管压力稳定。为合理确定多炉多机间的负荷分配系数,实现负荷的优化调度,论文设计了能效优化调度层+协调控制层的结构,并在能效优化调度层中提出了基于先汽机后锅炉的分层调度优化方法,以及基于带约束多目标粒子群智能算法(MOPSO)的全局调度优化算法,同时在调度过程中考虑了调压炉数量和类型的变化的影响。仿真结果表明,采用本文提出的两种负荷优化调度方法的机组运行煤耗量比采用平均分配负荷的机组运行煤耗量更低。
其他文献
与传统供暖方式相比,空气源热泵具有冷热兼顾、环保节能、安装方便等诸多优点,在长江中下游区域得到广泛应用。然而空气源热泵在冬季制热运行时易于结霜,霜层的存在将导致机组运行效率下降、功耗增加、室内供热量下降等问题,如何解决结霜问题成为空气源热泵领域的研究热点。冬季长江中下游区域空气源热泵室外翅片管换热器的结霜过程大致可分为液滴凝结、液滴冻结、霜晶生长及扩展等阶段。其中,液滴凝结阶段是后续霜层生长的基础
锅炉爆管事故严重威胁到机组的安全,传统防磨措施虽然有一定效果,但都存在明显的缺陷。本文基于沙漠蝎表面特征提取出相关仿生结构,并进一步采用数值模拟的方法对仿生表面进行耐冲蚀磨损特性、减磨机理以及最佳尺寸组合等方面的研究,最后将仿生结构应用于圆管表面上,通过实验的方法验证其减磨效果并研究相关磨损特性,为锅炉受热管防磨提供一条新思路。主要研究内容包括:首先,为得到颗粒冲蚀作用下仿生表面的减磨特性,基于沙
电磁环境(electromagnetic environment)是指存在于给定场所的所有电磁现象的总和。目前绝大多数仪器设备、灵敏器件和传感器都处于某种形式的电大尺寸屏蔽室内,电子系统所受威胁更多的来自舱室内辐射源在舱室内多次反射形成的“舱室内电磁环境”。由于舱室的谐振现象,这种耦合能量远强于设备之间的耦合,对电磁兼容设计提出了挑战。本文针对屏蔽良好的舱室采用混波室理论提出了一套行之有效的电磁环
生物质资源具有环境友好以及来源广等优点,成为维护国家能源安全和改善能源结构的可靠选择。生物质气化是生物质热化学利用的重要途径,气体产物品质高,且应用场景广。然而,产气中过高的焦油含量限制了生物质气化的工业化发展。低温催化氧化技术有利于去除生物质焦油,提高反应的经济性,因此,本文基于响应面法,优化制备改性过渡金属催化剂,开展生物质焦油低温催化氧化实验研究,对促进生物质气化技术的发展具有重要意义。首先
sCO2布雷顿循环具有效率高、结构紧凑、环保、能源适应性强等优势,其与太阳能以及地热能等能源形式的结合可满足提高能源利用效率、减少环境污染的要求,具有很好的应用前景。本文以sCO2布雷顿循环为研究对象,通过仿真模拟研究应用于太阳能系统的循环热力学特性及其技术经济性。首先根据模块化建模方法,建立了5种不同形式的sCO2布雷顿循环热力学模型,并针对热力学模型提出了求解方法、优化设计方法。通过模拟仿真对
随着社会的日益发展,人类对化石燃料的肆意开采和利用导致了严重的环境污染和资源枯竭。近年来,生物质作为一种可再生和清洁能源备受关注,生物质具有储量大、可再生、CO2零排放等优点,使其在替代或部分替代化石能源上具有重要意义。生物质分级气化技术利用CO2、H2O等气化介质,通过加入催化剂可以将生物质高效转化为合成气,应用前景广泛。以CO2作为重整介质,不仅可以降低H2O的消耗,还可以实现CO2的利用。因
生物质能源作为一种重要的可再生能源,受到了世界各国的广泛重视。通过生物质原料制备液体燃料是生物质能源利用的重要途径之一,有助于解决全球变暖和推动能源结构多元化转变。但是生物质快速热解制得的生物原油物化性质不稳定,无法直接应用于内燃机,经催化加氢、催化裂化、催化酯化提质后得到的生物燃料仍存在着燃烧效果差、汽柴油掺混比例低等诸多问题。将提质生物油进一步碳链延长可以制得生物质基长链醚类含氧燃料,该类含氧
活性炭改性和再生是当前最受关注的活性炭研究方向之一。目前常见的改性和再生方法能耗大、效率低,化学试剂的使用还会造成二次污染。因此,亟需探索新型廉价、绿色的改性和再生技术。低温等离子体因激发能耗低、能量密度高、氧化性强等特点,引起了学者的广泛关注。但目前主要采用纯氧或者空气等离子处理,在大气压下存在放电稳定性差、不均匀等缺点,相比氮气,氦原子亚稳态能量较大,更容易实现均匀放电。基于此,本论文提出了氧
随着社会和经济的发展,人民生活水平的提升,对建筑室内空调舒适度的要求也越来越高。辐射空调系统相较于其他空调系统,具有热舒适性高、噪音小等诸多优点,冬季地面辐射供暖系统的应用已比较普遍,而夏季地面辐射供冷系统因防结露调控方式尚不成熟,使其应用范围受到影响。因此,本文针对地面辐射末端供冷运行过程中存在的辐射板表面易结露以及末端响应速度慢的问题,从辐射板表面结露特性和辐射末端传热过程这两方面展开了研究,
化学链燃烧技术因其具有低能耗地分离和捕集CO2的作用,已成为一项重要的CO2捕集技术而得到广泛关注。当使用煤作为燃料时,煤焦气化速率通常低于载氧体还原速率,未气化的煤焦颗粒容易被载氧体携带进入空气反应器内直接燃烧,导致系统CO2捕集效率降低。本文构建了一套耦合炭颗粒与载氧体选择性分离系统的煤化学链燃烧试验装置,其中分离系统由惯性分离器和旋风分离器串联组成,根据双组分颗粒的密度、粒径差异对其进行选择