论文部分内容阅读
概率极限理论是概率论的主要分支之一,也是概率论的其他分支和数理统计的重要基础。近代极限理论的研究主要在于削弱对独立性的限制,使其更贴近实际、便于验证与应用。但由于其复杂性,许多问题未得到满意解决. 鉴于此,本文对这些问题进行研究,获得了如下结果:
1. 建立了ND(negatively dependent) 随机变量序列的指数不等式和矩不等式.运用这些结果讨论了几乎处处收敛性,将一些几乎处处收敛定理推广到了更为广泛的ND序列上来. 结果,将独立情形下的对数律推广到了ND序列情形下依然成立,文献中相应结果成为其特殊情形,并得到加强. 最后研究了ND序列的完全收敛性,本文将独立情形下的完全收敛定理推广到了ND序列情形下依然成立而未额外添加任何多余条件.
2. 针对ρ-混合序列,首先讨论了几乎处处收敛性,改进了杨善朝(1998),甘师信(2004)和吴群英(2001)等人的相应结果. 将经典的Khintchine-Kolmogorov 收敛定理,Marcinkiewicz 强大数定律以及三级数定理等从独立随机变量序列情形推广到了ρ-混合序列情形下而未额外增加任何其它条件;本文还讨论了ρ-混合序列的弱收敛性和完全收敛性. 将经典的弱大数定律和Baum 与Katz 完全收敛定理等等从独立随机变量序列情形推广到了ρ-混合序列情形下,这些结论实质性的改进和推广了文献中的相应结果.