睡眠环境下的局部空间毛细管辐射空调系统热舒适性实验研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:crying___leaf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
个人舒适性系统只针对人体所处活动区进行热舒适性调节,放宽对非活动区环境温度的控制要求,不仅能够满足不同人对环境温度的不同需求,还能减小房间内外的温差以降低能量损失。有关个人舒适性系统的研究及应用集中在办公环境,但近年来的研究发现,相比于办公环境,其更适合用于睡眠环境。毛细管辐射空调具有温度分布均匀性好、无吹风感、节能等优点,具备与个人舒适性系统相结合调节睡眠环境下人体热舒适性的潜力,但目前对其热性能的研究还较少。本文设计了一套用于睡眠环境下的局部空间毛细管辐射空调系统(R-PCS),通过实验的方式对其热性能进行研究,采用预测平均投票(PMV)和预测不满意百分比(PPD)两个指标分析其对人体热舒适性的提升效果,并掌握不同运行参数和环境参数对系统性能影响规律,同时对其节能潜力进行了分析。研究结果表明:(1)系统供水水温对辐射板表面温度的影响大于供水流量,但供水水温过低会导致辐射板表面结露。(2)供水水温及非活动区环境温度对活动区平均辐射温度影响显著,且非活动区环境温度对活动区平均辐射温度的影响大于供水水温。(3)使用R-PCS调节活动区内人体热舒适性可放宽对非活动区环境温度的控制要求,例如当非活动区环境温度降低到17.5℃时,为系统供应36℃的热水在一小时内可将活动区PMV提升到-0.7,满足大多数人的热需求,这有助于减小房间内外温差,减少室内能量散失。(4)在维持人体热舒适性的前提下,系统供暖时最高36℃的供水水温低于常规供暖系统40℃以上的供水水温;供冷时最低14℃的供水水温高于常规水冷空调系统7℃左右的供水水温,这有助于提高冷/热源设备工作效率。
其他文献
作为一种新型社交方式,网络直播迅速发展壮大,获得了广泛关注。丰富多样的网络直播内容为学生提供了大量的信息资源,但未经区分的信息也给学生造成了很大的负面影响。如何解决网络直播的负面影响,如何通过网络直播平台开展思想政治教育、创新思想政治教育工作方式成为研究重点。
目的:越来越多的研究表明维生素D除了在维持体内钙磷的稳态和调节骨代谢中发挥重要作用外,在生殖系统中也具有重要作用。一些研究显示体内血液维生素D缺乏与男性的生殖功能下降和生育能力降低相关,但是结论存在不一致,并且有一些研究显示血液中维生素D浓度过高时亦可能会造成精子活力降低和浓度降低。精原干细胞是男性生殖功能的种子细胞,但是维生素D对精原干细胞的具体作用,至今少见报道。本研究首先旨在研究维生素D异常
小麦族(Triticeae)中不同属、种间的天然杂交现象较为普遍。通过杂交产生同源多倍体和异源多倍体物种,是小麦族物种形成的主要方式。鹅观草属(Roegneria C.Koch.)是小麦族中的异源多倍体,由St和Y染色体组组成,具有优良的牧草性状及较强抗逆性,是优质的牧草育种资源。川西北高原是一个高海拔地区,存在着许多丰富且重要的牧草,如鹅观草属和披碱草属。我们在单株种植川西肃草(R.strict
超冷原子实验装置的小型化一直受到传统光学元件尺寸的限制。近年来,光电技术的不断发展使得电磁调控理论和半导体器件制造工艺快速发展,越来越多能够实现集成化的微型光学器件被设计和制造。超材料是利用亚波长高度的单元排布而成的超薄平面光学材料,可以实现对电磁波偏振和相位等性质的灵活控制,因此它为原子芯片的设计提供了新的思路,一些基于超表面的原子芯片也逐渐被提出。本文主要利用传输相位型超表面设计了两种可以用于
四氧化三铁(Fe3O4)材料由于磁学性能优异,在许多领域都得到广泛的应用,并且有关其表面功能化修饰的研究也在不断发展。经研究,无机材料中,碳材料和氧化硅等一直被用于磁性材料的修饰。介孔氧化硅(mSiO2)如果包裹在Fe3O4外层,其致密结构能起到保护Fe3O4颗粒的作用,并且其疏松多孔的结构能大大提高其吸附效果。碳材料包覆Fe3O4颗粒能提高其稳定性,并且碳材料表面丰富的官能团可以与废水中染料分子
学位
气候变化早已成为全球热点问题之一,碳排放是导致气候变化的最主要因素。随着低温技术的发展,绝热层制备工艺在建筑、汽车、船舶、管道运输和航空航天等领域的应用越来越广泛。绝热层制备工艺包含喷涂和打磨等环节,产生大量的碳排放。如何定量分析绝热层制备工艺的碳排放,是降低碳排放需要解决的基础问题之一。目前对绝热层制备工艺的研究主要集中在绝热性能和机械强度等方面,缺乏对绝热层制备工艺碳排放的定量研究。因此,本文
研究背景及目的据报道,全球三分之一的死亡率归因于细菌感染,细菌感染可引起范围广泛的疾病,其中金黄色葡萄球菌是引起临床感染的主要细菌之一,其能够引起包括感染性心内膜炎、骨关节炎、皮肤和软组织炎症、肺炎以及器械感染在内的相关炎症。金黄色葡萄球菌具有较高的致病性,且极易产生耐药性,使得传统的抗菌疗法治疗效果不佳,极大增加了临床细菌感染类疾病治疗的难度。目前,传统的细菌感染类疾病的治疗方法仍然是以抗生素为
锂硫电池因其较高的理论比容量和低成本而备受关注。与基于锂离子嵌入/脱嵌原理的锂离子电池不同,锂硫电池在充/放电过程中会经历多个反应中间体,其中长链多硫化锂(Li2Sn)在电解质中的溶解与扩散会导致活性物质硫的损失,进而引起电池的容量衰退和库仑效率降低。针对上述问题,本文围绕具有多氮杂原子大环结构的酞菁开展分子与材料设计,以动态捕获可溶性的Li2Sn并调节锂离子的沉积行为。首先利用氨基锌酞菁(Zn
塞曼减速器作为高效的减速器,是冷原子光晶格钟、量子简并气体等原子物理实验的重要组成部分,用于获取连续、高通量、缓慢的原子束流。目前,小型化是光晶格钟发展的主要方向之一,要求实验装置具有功耗低、体积小、重量轻的特点。对于传统的通电线圈式的塞曼减速器,需要消耗大量电能并且具有复杂的水冷结构,限制了光晶格钟的小型化。因此,零功耗的永磁体塞曼减速器成为当前研究热点。本文基于永磁体开展了塞曼减速器的优化设计