关于拟圆地毯拟对称一致化的研究

来源 :湖北大学 | 被引量 : 0次 | 上传用户:wybyoung
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一个集合T(?)C是一个拟圆地毯当且仅当int(T)=(?),并且它可以写成(?)其中Di是两两不交的闭若尔当域且(?)Di都是拟圆.拟圆地毯的一致化指的是,存在一个全平面上的拟共形映射,使得这个拟圆地毯的边界在此映射的作用下都映成圆周.本文主要讨论了平面上的拟圆地毯在什么条件下可以拟对称一致化,具体内容分以下六个部分:第1章指出本文所研究问题的意义和背景以及一些符号.在第2章中,回顾了拟共形映射,拟对称映射和拟莫比乌斯映射的定义与基本性质,还指出了这三种映射之间在某种条件下可以互相转换.在第3章中,给出了拟圆的定义和它的等价定义,还给出了一致拟圆和一致相对分离的概念,最后证明了莫比乌斯映射保这两种一致性.在第4章中,讨论了映射延拓的问题,主要证明了在一定条件下一个莫比乌斯嵌入可以延拓成全平面上的拟共性.第5章主要通过计算给出了跨界模的上下界估计.最后,对本文的主要结论进行了证明,并且提出了一些反例.
其他文献
癌细胞会对其新陈代谢进行重新编程,以支持其快速生长和增殖的需求。这种代谢重编程是多种癌症的标志,而其中最早发现的代谢重编程表现为葡萄糖摄取的增加;同时,即使在线粒体功能正常和氧气充足的情况下,癌细胞也会加速糖酵解到乳酸的生成,这种现象被称为“Warburg效应”或有氧糖酵解。这种代谢重编程为癌细胞提供了ATP和生物合成的基础,包括中间代谢物、核苷酸、蛋白质和膜成分的生物合成。由于癌细胞严重依赖有氧
新鲜的饮用水是人类的基本需求。尽管现代技术极大地提高了饮用水的供应效率,但水资源危机仍然危害着世界各地人们的生存,尤其是在不发达地区。在那些雾水比雨水丰富的干旱地区,水雾收集是一种潜在的获取淡水的方法,这对于生活在那些地区的人们来说至关重要。自然界中天然存在的纳米布沙漠甲虫、蜘蛛丝和仙人掌刺的水雾收集能力已经极大地激发了仿生水雾收集技术的发展,但是单个生物水雾收集的效率还远远不是最优的。研究表明多
禾谷镰刀菌是一种引起小麦患赤霉病的主要病原真菌,侵染小麦麦穗后会分泌脱氧雪腐镰刀菌烯醇(DON)和玉米赤霉烯酮(ZEN)等真菌毒素,使小麦的产量和品质降低。目前,防治小麦赤霉病的主要手段是加强田间管理、培育抗性品种、使用化学农药以及采用生物菌剂进行防治等。但因抗性品种的培育需要的周期长,化学农药容易导致抗药性,加大用量会增加污染环境。因此,生防防治病害的研究和应用越来越受到人们的青睐。本实验以湖北
太阳能蒸汽技术被用于海水淡化,不仅缓解能源的短缺,还能够提供清洁的饮用水。设计制备应用于经济高效稳定的太阳能能蒸汽技术的光热材料具有十分重要的科学意义和应用价值。优异的太阳能光热转换体系应该具备:1.高效光吸收和光热转换;2.有效的热管理;3.良好的水供给和蒸汽收集。为此,本论文以还原氧化石墨烯为光热材料,海藻酸钠/淀粉/碳酸钙三维气凝胶做隔热的支撑衬底,设计制备了铝箔/石墨烯/四氧化三锰和石墨烯
染色质调控因子分为染色质重塑因子和染色质修饰因子,它们在基因转录中起重要作用。全基因组数据的分析结果表明,大多数染色质调控因子以间接的方式调控基因表达。然而,大部分间接调控的机制尚不清楚,揭示染色质调控因子调控基因表达的间接分子机制将有助于理解染色质调控因子在基因调控及相关生物学过程中的确切作用。在本论文里,我们研究了通过影响组蛋白甲基转移酶Set1的转录间接调控基因表达的组蛋白修饰酶。通过无偏好
设Tr1(n,Qπ)是Qπ上主对角线元素全是1的所有上三角矩阵组成的群.其中q={n/m|(m,n)=1,n∈ Z,m是π-数},Qπ是(Q,+,·)的子环,这里的π是一些素数的集合,若整数m的素因子全属于集合π,则称m是一个π-数.设kij(1≤i
硒是氧族的一种非金属元素,也是动植物及人类健康必需的微量元素。它拥有较高的表面积、较强的吸附力和抗氧化功能,如抗羟自由基功效、抗DNA氧化作用以及抗微生物活性等。已知硒在免疫调节、抗氧化、延缓衰老、抑制肿瘤、治疗微生物感染方面具有应用潜能。单质纳米硒体外清除羟基自由基的效率为无机硒的5倍、有机硒的2.5倍、其毒性仅为亚硒酸钠的1/7。在抗病毒方面,研究较少,仅在少数与人类疾病相关的病毒方面有报道,
近年来,以金属卤化物钙钛矿为代表的钙钛矿结构材料因其优异的光学增益、高的光吸收系数、长的载流子扩散长度,在太阳能电池、发光二极管(LED)、激光、光电探测器等光电器件领域显示出极大的应用前景。然而,当前金属卤化物钙钛矿研究还面临材料稳定性较差、湿热条件下易降解及光物理研究还不深入、发光机理不明确等问题。因此,高质量金属卤化物钙钛矿微纳结构的制备与光物理特性研究对加速其器件的商业化应用具有重要意义。
逆曲率流是几何分析研究中热门的研究专题之一,可以导出一些重要的几何不等式,吸引着不少国内外几何学者的关注.考虑(n+1)-维欧氏空间里星形的、可容许的闭超曲面在逆曲率流X=|X|α-1F-β,α≤1,β>0下的演化.这里,F是满足一定单调性、对称性、凹性的非负一次齐次主曲率函数,v是演化超曲面M:=X(Sn,t)上的单位外法向量,|X|表示Rn+1中点X(x,t)到原点的距离.我们证明了:在α≤1
纠错码理论是信息论的重要内容,可以有效提高信息传输的可靠性,具有重要的研究价值.其中,低重量线性码在密钥共享方案、认证码、结合方案、强正则图以及其他领域有重要的应用价值,一直是纠错码理论的重要研究方向.线性码的重量分布,作为线性码的一个重要参数,包含着码的纠错能力以及其检错和纠错的错误概率这些关键信息,而且重量分布的确定一直是比较困难的问题.因此,低重量线性码的构造以及其重量分布的确定不仅具有理论