论文部分内容阅读
碳羟基磷灰石(以下简称为CHAp)作为一种功能生物材料,继承了羟基磷灰石(以下简称为HA)所具有的大部分优秀特性,在生物化学、生物医药、环境工程、化工催化等领域有着广泛的应用。本论文采用两种模板诱导自组装途径合成了多孔CHAp:一种为采用实验室常见药品制备,并使用不同的螯合离子:乙二胺四乙酸(EDTA)和柠檬酸(CA);另一种为采用天然胶磷矿制备。采用XRD、FT-IR及SEM对产物的组分及形貌进行了分析,发现产物为由纳米尺寸片晶组装而成的花状多孔CHAp微球。采用实验室制法所得产物为B型取代CHAp,而采用胶磷矿为原料得到的为A型取代CHAp;对于采用实验室路线自组装合成的多孔CHAp微球,研究了同种螯合离子在不同浓度下对产物多孔CHAp微球孔径的控制及不同螯合离子在同种浓度下的孔径控制规律,结果表明:对于同一种螯合离子而言,随着螯合离子浓度的增加,多孔CHAp的孔径逐渐减小,且随着浓度的不断增加,孔径的减小趋势变缓。以上规律有助于我们根据主观意愿,控制合成孔径在纳米-微米范围内的多孔CHAp;此外,对于同一浓度下的不同螯合离子而言,采用CA为螯合离子所得产物孔径比采用EDTA所得产物孔径小得多。这一现象使我们能更加便捷地得到较小孔径的多孔CHAp;利用理论途径(构建液体中气泡稳定存在模型及初步探讨模板诱导合成CHAp的多孔结构的形成过程),分别通过调节体系压力和初始溶液表面张力,从而研究现对CHAp孔径的精确控制并推导出相应的理论控制关系式,结果表明:体系压力越大,孔径越小,且微球表面越致密,片晶越小。压力与孔径之间的控制关系满足关系式4-7;另一方面,表面张力越大,孔径越小,且微球表面越致密,片晶越小。表面张力与孔径之间的控制关系满足关系式4-9。对CHAp微球的压力控制及表面张力控制均为较为精确的控制方法,且有关系式作为理论基础。二者可以有机结合成一套完整的对于CHAp孔径的理论控制方法;根据螯合离子和CO2气泡在自组装生长过程中的重要作用,深入研究了泡界模板诱导合成多孔CHAp微球的自组装过程和机理:首先,螯合离子将钙离子定位于气泡表面;然后CHAp在普拉托边界处率先成核。此外,钙离子从气泡表面的定向释放导致了CHAp片晶沿着气泡交界面定向自组装生长;最后,片晶互相连接形成多孔结构,球形泡沫变为多孔微球。此外,利用得出的自组装机理深入的解释了前面章节所发现的螯合离子浓度对产物孔径的控制规律。