【摘 要】
:
微纳光波导是一种能够在微纳米尺度下限制和引导光在结构内传输的介质波导。近些年来,随着微纳米加工技术的快速发展,基于硅半导体、聚合物和自组装有机分子等材料的有源光波导器件被广泛应用在集成光学芯片等领域上。基于稀土上转换发光材料的光波导可以在近红外光激发下实现对荧光的波导传输功能,具有生物穿透性较深和低毒性的优点,因此有望在光通信、生物成像等集成光学芯片等应用中产生重要的作用。由于稀土颗粒具有不同的形
论文部分内容阅读
微纳光波导是一种能够在微纳米尺度下限制和引导光在结构内传输的介质波导。近些年来,随着微纳米加工技术的快速发展,基于硅半导体、聚合物和自组装有机分子等材料的有源光波导器件被广泛应用在集成光学芯片等领域上。基于稀土上转换发光材料的光波导可以在近红外光激发下实现对荧光的波导传输功能,具有生物穿透性较深和低毒性的优点,因此有望在光通信、生物成像等集成光学芯片等应用中产生重要的作用。由于稀土颗粒具有不同的形貌和尺寸,其相应的传输模式各不相同。因此,为了探究激发光和荧光在不同形貌尺寸的稀土微米光波导中耦合和传输的详细过程,需要采用合适的光学仿真方法和模型。目前,光学仿真的方法主要有两种:其一是基于电磁波理论的有限元方法,特点是仿真结果精确且不受衍射极限限制,但计算量较大,因此一般被用来分析尺寸小于衍射极限的硅基光波导等器件的传输情况;其二是基于几何光学原理的光线追迹仿真方法,其特点是在大于衍射极限的光学模型上能够快速计算并获得较为准确的模拟结果,但是目前有关稀土光波导模拟的相关文献并不多见。因此本论文基于非序列光线追迹仿真方法,分别对两种形貌结构不同且尺寸大于衍射极限的稀土掺杂上转换发光微米颗粒的光波导和发射现象进行模拟研究。主要研究内容如下:(1)模拟研究了不同激发条件下NaYF4:Yb3+/Er3+端头斜切微米管对激发光和荧光的不同传输特性。通过仿真发现:在激光激发微米管中间部分时,只有荧光能够耦合进微米管内波导传输;在激发端头的条件下,能够实现同时耦合激发光和荧光的波导传输功能;此外,改变微米管端头与激光的夹角,能够调控微米管对激光的耦合能力。最后与实际实验的结果进行对比发现模拟结果与实际现象基本一致。(2)在上述方法的基础上,模拟研究了 NaYF4:Yb3+/Er3+皇冠状微米波导的发光图像以及荧光的空间角发射情况。通过改变荧光光源模型的尺寸和位置,分析其对颗粒的发光图像的影响情况,选择较为符合实际的荧光光源模型模拟出了实验中真实的荧光波导角发射发光图像。最后通过改变荧光光源的位置来研究皇冠状微米波导棱角的荧光空间发射角的变化趋势,发现模拟结果与实验的变化趋势相同。
其他文献
空气源热泵(Air Source Heat Pump,ASHP)作为一种部分时间、部分空间使用的分散式供暖方式,能满足不同住户对室温的需求差异,同时利用空气能进行供暖,可节省初投资和运行成本,并能起到保护环境的作用,具有广阔的应用前景和空间。ASHP室外换热器暴露在空气中,积灰难以避免,而在实际安装过程中,室外机常安装在室外凹槽内,或直接安装在室外外墙上,致使居民对室外换热器的清洗变得十分困难,同
我国是水产养殖大国,循环水养殖系统(Recirculating Aquaculture System,RAS)技术在我国目前有广泛的应用与发展。但是高密度养殖方式、残余的饵料投加量以及反硝化过程的缺失等现状的约制,导致硝酸盐容易在RAS中积累。高溶氧下难以实现传统的反硝化过程以及总氮去除的补水要求,且随着硝酸盐积累,将伴随着水产养殖产物生理机制破坏、生长速率抑制、成活率降低,甚至致死等问题的出现。
农业生产中,因猪粪中磷含量丰富通常将其作为有机肥还田。施入土壤的磷当季利用率较低,过量的磷在土壤中不断累积,导致土壤磷过剩。土壤中过量磷的流失是导致水体富营养化的主要原因之一。利用磷富集植物提取土壤中的过量磷,是从根本上降低磷素流失风险的有效措施。然而,磷富集植物种植下土壤磷的迁移转化特征及植物的提取效果尚不清楚。因此,本研究以磷富集植物水蓼为研究材料,采用土培试验和小区试验相结合的方法,从理论联
煤炭、冶金等行业中由于设计产能需要常建造原料场,条形料场在其中得到广泛应用,条形料场占地面积大且对地基承载力要求高。料场上部结构常为网壳结构,网壳结构受外界因素变化敏感,稳定性问题较为突出,而基础体系不均匀沉降对结构的整体稳定性影响最为突出。在基础承台之间布设拉梁,对增强基础体系的整体性、保证基础体系受力均匀及控制不均匀沉降效果显著。本文基于中冶赛迪工程技术股份有限公司科研项目“原料场挡料墙侧向料
随着国家经济、文化、科技等领域的蓬勃发展,人们的生活质量和精神文化需求得到了极大提高,与此同时社会对国民素养和人才培养的目标也有了新的要求,基于以上原因,《普通高中数学新课标(2017版)》应运而生,新课标要求教师要以培养学生的核心素养为目标,进而使学生形成数学的理性思维,学会用数学思维去思考问题,发现知识,不断提升自我的能力。数学写作作为一种非常特殊的学习方式,是否能够成为培养数学核心素养的有力
工业革命以来,资源的枯竭和生态环境的破坏越来越严重,社会经济发展引发的资源环境问题引起了世界各国政府广泛的关注。中国快速的经济增长引起能源消耗量逐年上涨,由此带来的大气污染物与CO2排放量居高不下。改善中国经济、能源消耗与大气排放影响之间的关系对于促进中国社会经济的持续发展具有重要的意义。本文首先基于能值理论建立了大气排放成本的计量方法(包括对人体健康与生物多样性的危害),然后建立了一套基于货币、
近年来随着集约化农业的快速发展,大量化学氮肥投入带来作物高产的同时,也导致农田面源污染和温室气体排放问题日益突出。探索满足作物高产、农业资源利用高效和低环境负面效应的施肥模式意义重大。因此,本研究在成都平原稻麦轮作系统下开展田间试验,设置不施肥(T0)、单施化肥N(T1)、25%猪粪N+75%化肥N(T2)、50%猪粪N+50%化肥N(T3)、100%猪粪N(T4)、150%猪粪N(T5)、200
塑料在全球范围内广泛使用,带来较为严峻的环境污染问题。其在环境中破碎分解成的微塑料随水体或大气迁移,产生一系列危害。污水处理厂被认为是环境中微塑料的一个重要排放源,弄清污水处理厂主要工艺单元中微塑料的分布情况及规律对控制微塑料排放有重要意义。微塑料对环境污染物有一定吸附性,微塑料与有害污染物共同存在时对污染物的吸附行为有待明确。本研究选取了成都市的两个典型污水处理厂,分析主要工艺单元微塑料存在情况
氯离子引发的钢筋锈蚀是导致海洋环境下钢筋混凝土结构提早失效的最关键因素,层状双金属氢氧化物(LDHs),可以在侵蚀性介质(氯离子等)进入混凝土内部能够达到有效的固结,且结构和水泥的水化产物类似,在建筑材料领域已经成为研究和应用的热点,然而目前关于LDHs材料固结氯离子机理认识不够深入,例如,LDHs材料本身的结构组成(二价金属阳离子类型、二价与三价金属阳离子的比例)都会在一定程度上影响固结氯离子能
我国农田土壤重金属污染问题日趋严重,大量受到污染的农田无法得到有效利用,本文通过了解收获高粱生物质中的重金属分布特点,提出了一种安全利用重金属污染农田的新思路。在重金属污染农田上种植“川糯”和“泸州红”高粱进行试验,在明确收获高粱各器官重金属蓄积的基础上,研究了籽粒乙醇转化和产后废弃物厌氧消化性能,以及各转化过程中重金属的转归情况。主要的研究结果如下:(1)两种川糯和泸州红高粱富集重金属能力均不强