论文部分内容阅读
地下水埋深预报对于区域地下水开发利用、水资源评价管理和地质灾害的治理具有重要的科学意义。本文综述了随机模型、灰色模型、模糊模型、人工神经网络预测模型和混合预测模型的研究进展,分析总结已取得的成果和存在的问题,并针对目前研究中存在的不足,选用陕西省关中地区20个监测井的月地下水埋深资料,选定平均绝对误差(MAE)、平均相对误差(MRE)、均方根误差(RMSE)、均方百分比误差(MSPE)、确定性系数(R~2)和纳什效率系数(NSE)6个误差指标以及预报合格率(QR)和预报项目精度分级,开展研究区地下水埋深序列的预报模型研究与综合评价。本文的主要研究内容和结论如下:(1)建立BP网络、支持向量机(SVM)和核极限学习机(KELM)3种单一人工神经网络预测模型,将基于单一人工神经网络的预测模型用于研究区地下水埋深预报。研究发现,在训练期,三种预报模型对于所有监测井均表现出较好的拟合效果。在验证期,SVM模型和KELM模型的预测性能优于BP网络模型,BP网络模型的预测结果比较杂乱,规律性较差,而SVM模型和KELM模型能较好地预测出地下水埋深序列的趋势变化和周期波动特征。这可能是因为SVM模型和KELM模型引入正则项惩罚因子,可以有效地避免训练期的数据过拟合,进而提高模型的泛化能力。同时,网络搜索交叉验证参数寻优法和PSO优化算法可以防止试错法和人为确定主观性的影响,为模型参数的确定提供一种更为合理、科学和有效的途径。同时,SVM模型和KELM模型的预测能力各有千秋,但是两个模型存在共同的不足之处是:它们对极值点的预测能力较差,并且普遍存在预测序列存在一个月延迟的情形。(2)基于小波(WA)消噪方法和变模态分解(VMD)消噪技术,构建新型基于消噪方法的混合人工神经网络预报模型(WA-BP、WA-SVM、WA-KELM、VMD-BP、VMD-SVM、VMD-KELM模型)。研究区地下水埋深预报结果表明,BP网络模型的两种混合预测模型的预测能力比SVM和KELM的混合模型的预测能力差,无论是对于地下水埋深的趋势项、周期波动项和极值点等的预测,还是预测时存在的一个月延迟误差,SVM和KELM的混合模型都能较好地改善,但是还是难以准确预测极值点。在3种基于小波消噪的混合预测模型中,WA-SVM的预测精度更高,在3种基于VMD消噪技术的混合预测模型中,VMD-KELM的预测精度更高。这说明小波消噪技术更适合于SVM模型进行结合,而VMD消噪技术则更适合与KELM模型相结合而组成一种精度高、适用性强的混合预测模型。(3)研究区地下水埋深预报模型优选。结果表明最优模型均为改进的混合模型。监测井W19的优选模型为WA-SVM模型,#100、K423和W15-1的优选模型为VMD-SVM模型,监测井K110、K214、K106、#85-1、J16、589、N16、E12-1、232、261、B9、267、B557、CQ19、W25-2和W15的优选模型为VMD-KELM模型。这些结果说明混合模型可以减小预报误差,提高预报精度。这可能是因为本文所应用的消噪方法能有效地提取地下水埋深序列中的趋势分量和周期分量,降低了序列中的噪声成分,较好地提高预测精度。同时,研究区19个监测井的优选模型为基于VMD分解消噪技术的混合预测模型,只有一个监测井的优选模型为基于小波消噪的混合预测模型。这说明文中提出的新型VMD分解消噪技术比小波阈值消噪方法更适合与人工神经网络预测模型耦合去预测研究区地下水埋深。综上,通过研究区监测井的数据驱动模型的构建,并基于选定的误差指标和精度评价指标进行模型评价择优可以发现,改进的混合模型可以较好地利用实测数据所提供的信息,提高预报精度,增强模型的适用性。