论文部分内容阅读
畜禽粪污管理过程是农业温室气体以及氨气的重要排放源之一,而粪污存储过程中的温室气体和氨气排放是粪污管理过程中的主要排放源,研究粪污存储过程中气体排放特征与减排技术对控制温室气体以及氨气排放具有重要的意义。我国每年畜禽粪便产量大,针对不同畜禽粪便存储过程中气体排放特征对比研究鲜有报道,本文选择了我国主要畜禽粪便,包括生猪粪便(PM)、奶牛粪便(DCM)、肉牛粪便(BCM)、蛋鸡粪便(LM)、肉鸡粪便(BM),利用动态箱法测定了各种畜禽粪便贮存过程中的温室气体和氨气排放特征,比较分析了不同畜禽粪便贮存过程的气体排放差异和影响因素;在充分分析国内外畜禽粪污存储过程中气体排放特征和减排技术后,选取硫酸酸化处理猪场原水和沼液,原水对照组pH为6.5(RCK),加酸处理后pH分别为5.1(RT1)和5.7(RT2);沼液对照组pH为7.8(BCK),加酸处理后pH分别为5.7(BT1)和6.5(BT2),采用动态箱法在线监测存储75 d内各气体排放通量,对比减排效果,主要结论如下:粪便贮存气体排放研究结果表明:PM、DCM、BCM、LM、BM五种粪便存储过程中的CH4排放通量分别为3.40、122.30、41.47、2.21、4.73 mg kg-1 d-1;CO2排放通量分别为792.85、652.65、444.00、1668.08、645.42 mg kg-1 d-1;NH3排放通量分别为14.86、0.95、1.68、67.21、19.80 mg kg-1d-1;N2O排放通量分别为0.33、0.90、0.94、0.76、0.27 mg kg-1 d-1。粪便特性影响贮存过程中C、N气体排放,经过77d存储后PM、DCM、BCM、LM、BM的CO2-eq分别为14.09、281.98、108.67、20.18、15.81g kg-1,其中DCM排放的CO2-eq量最高,明显高于其他粪便(p<0.05),PM最低;LM的GHGs(CH4+N2O)主要来自N2O,达到76%,而DCM、BCM和BM贡献率则以CH4为主,达到65%~94%,PM两者贡献比例相当;不同粪便贮存过程中甲烷转化系数存在较大差异,DCM的CH4转化系数最高,达到41.2%,BCM转化系数为18.5%,明显高于IPCC推荐值,其他粪便转化系数低于推荐值;五种畜禽粪便贮存过程中氧化亚氮排放因子为0.002~0.013 kg N2O-N kg-1 N,与IPCC推荐值具有一定的可比性。粪污贮存酸化气体排放研究结果表明:对于原水组,RCK和RT1、RT2的CH4排放通量分别为32.2,2.37和3.10 g m-3 d-1,N2O排放通量分别为336.45,23.36,29.79 mg m-3 d-1,NH3排放通量分别为1.01,0.82,1.63 g m-3 d-1,CO2排放通量分别为109.14,99.66,110.55 g m-3 d-1,酸化处理显著降低原水CH4和N2O排放量;对于沼液组,BCK,BT1和BT2的CH4排放通量分别为0.24,0.86,0.63 g m-3 d-1,N2O排放通量分别为2.54,73.43,268.66 mg m-3 d-1,NH3排放通量分别为8.02,1.35,1.51 g m-3 d-1,CO2排放通量分别为48.9,44.3,44.0 g m-3 d-1,酸化沼液显著增加CH4和N2O排放通量,但是NH3排放可显著降低81~83%,同时酸化组内氨氮含量较对照组增加40~54%。根据CH4和N2O在100a尺度上的全球增温潜势计算各组的综合温室效应,猪场原水酸化后CO2-eq降低91~92%;沼液酸化后温室气体增加5~11倍。结果说明:酸化处理原水能够有效降低温室气体排放,而酸化处理沼液则一定程度上增加了温室气体排放,但可有效降低氨气排放,同时保留沼液中氮养分。