结构-功能一体化粘土基陶瓷/碳复合材料的热压制备及其性能研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:QQQ16416
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
粘土矿物作为传统陶瓷原料,广泛分布在自然界中,廉价易得。然而,粘土矿物制备的陶瓷材料力学性能差,功能性不足。针对这一问题,本文通过热压粘土/生物质(碳)粉末,制备了陶瓷/碳复合材料,并对复合材料进行力学性能和导电性能表征分析,主要内容如下:(1)溶液吸附法制备蒙脱石-葡萄糖,然后热压烧结获得蒙脱石基陶瓷/碳复合材料。1000 ℃热压之后,蒙脱石基本没有发生相变,仍含有大量石英。热压过程中,葡萄糖原位碳化成碳,产生了CO、CO2等大量气体,导致复合材料出现大量孔隙,降低了复合材料的力学性能。但是,葡萄糖碳化形成的碳显著提升了复合材料的导电性能。随着葡萄糖含量的增加,复合材料中的碳含量增加,气孔率也随之增加,力学性能逐渐下降,电导率逐渐增加。(2)水热-热压耦合法制备埃洛石基陶瓷/碳复合材料。水热处理埃洛石和壳聚糖,获得埃洛石/碳;然后热压烧结制备埃洛石基陶瓷/碳复合材料。在1300 ℃,埃洛石转变成莫来石和二氧化硅,埃洛石表面的碳进一步原位碳化,并与埃洛石发生化学反应,生成SiC。埃洛石表面的碳阻碍了埃洛石的烧结,使复合材料出现裂纹,降低了复合材料的弯曲强度。少量裂纹促进了裂纹偏转和裂纹桥接,提升了复合材料的断裂韧性。当埃洛石和壳聚糖的比例为8:1时,复合材料的断裂韧性最佳为2.130±0.006 MPa m1/2,相比热压埃洛石获得的陶瓷,韧性提高了12.93%。由于碳具有导电性,陶瓷/碳的电导率随着埃洛石表面碳含量的增加而增加。(3)以质量比例为4:1的埃洛石和壳聚糖作为研究对象,改变热压压力确定复合材料的最佳热压压力。随着热压压力(10-40 MPa)的增加,复合材料内部的孔隙和裂纹逐渐减少,复合材料的弯曲强度和电导率不断增加。裂纹的消失缩短了裂纹偏转的路径,不利于改善断裂韧性。当热压压力为20 MPa时,复合材料中存在适量的裂纹,提升了复合材料的断裂韧性,达到了2.206±0.104 MPa m1/2。(4)埃洛石基陶瓷/碳复合材料是在1300 ℃热压得到,生成了莫来石陶瓷,且埃洛石表面的壳聚糖已经过水热碳化处理,在热压过程中基本无CO和CO2气体逸出,复合材料的致密程度和碳的石墨化程度高。因此,力学性能和电导率要高于在由方石英和石英陶瓷组成的多孔蒙脱石基陶瓷/碳复合材料(热压温度为1000 ℃)。
其他文献
过渡金属硫化合物具有独特的电子结构、较高电催化活性和良好的化学稳定性等特点,被认为是具有较好应用前景的电解水析氢催化剂。层状结构VS2是一种优异的析氢电催化剂,具有较好的氢吸附吉布斯自由能、良好的电导率和优异的热稳定性。VS4(V(S22-)2)作为另一类含钒硫化物,具有独特的一维链状结构,链间距大(0.583 nm)、硫含量高、带隙约为0.8 e V,目前主要用于储能器件,包括钠/锂离子电池、锂
目前普遍认为,与游离的线性多聚体药物相比,具有共价骨架的纳米颗粒有更好的稳定结构,并且在血液中的循环时间更长。本文采用活性自由基聚合、开环反应和铜(I)催化叠氮-炔烃点击反应相结合的方法,制备了含有还原响应性喜树碱(CPT)前药和光热转化近红外染料(IR780)的聚前药两亲性分子,其负载的药物含量可以根据需要通过调节单体投料比实现。所得的两亲性P[CPTM-coGMA(-IR780/-OH)]-b
在过去的几十年里,超表面由于其在亚波长的范围内操控光的能力而引起了广泛的关注。通过在空间上调整超表面的几何参数,可以控制光的相位、振幅以及偏振,从而人为控制反射或透射波的波前。相变材料由于其可调谐电磁响应,被应用于超表面领域,使得该领域的发展获得了全新的动力。本文基于相变材料Ge2Sb2Te5(GST),在红外波段提出了两种具有可调谐功能的光学器件:消色差超透镜、消色差偏转器与定向通信超透镜,并从
非晶合金由于其内部微观结构并不像晶体一样具有规律排布的晶格,因而在许多性能,如力学性能、磁性能、热力性能等性能上表现出优异特性,是一种具有极高的研究价值以及广泛的应用前景的新型材料类别。Fe基非晶合金是非晶中的一个主要类别,其一般在磁性能上有较为突出的表现。本课题组前人已经对Fe BYNb系非晶合金进行Ti、Co、Mo、Ni的元素掺杂,但Fe BYNb系非晶合金作为Fe基非晶合金其磁学性能并不突出
因高比强度、低密度与热膨胀系数等优点,TC4钛合金在微波组件电子封装领域的应用受到重视。但在薄壁、复杂外形TC4钛合金电子封装壳体加工中,常常发生加工变形,成品率降低。因此,开展TC4钛合金机加工前工艺优化研究,改善组织结构,提高机加工性能与成品率,具有重要价值。本文首先对加工变形量大的TC4钛合金坯料进行显微组织及力学性能测试分析,找出其加工质量不合格的原因。其次,对该批次TC4钛合金坯料进行不
由于全球范围内的化石能源的存储量越来越少,对于新能源的开发和利用迫在眉睫。同时,对于超级电容器的研究也受到了越来越多的关注。本论文致力于通过简单的方法制备新型超级电容器电极材料。先以一步水热法制备了还原氧化石墨烯(rGO)/碳纳米管(CNTs)复合水凝胶,再分别与有机小分子对苯二酚(HQ)、过渡金属氧化物锰酸锂(LMO)、导电聚合物聚苯胺(PANI)复合,得到三元纳米材料。具体内容分为以下四个部分
集成电路对于现代人类社会发展具有无可替代的作用,然而随着技术的进步,集成电路中的发热和散热问题成为其发展的瓶颈之一。为了突破这一瓶颈,人们提出了热自旋电子学,兼具自旋电子学和热电子学二者的优点,为未来新型集成电路的设计提供了新的思路。在热自旋电子学中,热温度梯度驱动的纯自旋流器件,因其内部只有自旋流,没有电荷流,器件中没有由电荷流产生的焦耳热,对于解决集成电路发展过程中的热问题非常重要。基于热自旋
H13钢作为一种工业中常用的热锻模具钢,在服役过程中长时间受到机械载荷,热冲击等,模具表面易发生磨损和热疲劳等失效。为了提高H13钢表面力学性能,延长H13钢模具的寿命,本文分别采用激光表面淬火和激光熔覆高熵合金熔覆层技术,提高H13钢表面力学性能。采用激光表面淬火技术,对H13钢表面进行组织相变加工,得到一定厚度的相变硬化层,同时保持H13钢内部组织不发生变化。设计功率和行进速度的正交实验,得到
DNA分子不仅是一种携带并传递遗传信息的重要生物大分子,也是一种可用于构建微纳尺度精巧结构的组装基元。二十世纪八十年代,Nadrian C.Seeman教授率先提出采用DNA分子作为组装基元构筑高级有序结构,开启了DNA纳米技术这一领域。DNA纳米技术的蓬勃发展为材料、化学、生物计算、医学等众多领域的交叉研究提供了各种机会。DNA功能化纳米金不仅具有纳米金颗粒的优良性质,而且拥有来自DNA的可编程
现有发光功能材料中,镧系离子(Eu2+、Eu3+、Ce3+等)掺杂的发光材料为数众多,但镧系离子存在分离困难以及提取过程中会污染环境等缺点,严重影响了稀土离子掺杂发光材料产业化的发展。相比而言,过渡金属离子的原料相对易得,拥有丰富的能级结构,而且光谱在很宽的范围内可以调节,其作为激活剂离子,具有替代镧系离子的潜在优势。现阶段,在LED、长余辉等领域,已经开发较多的过渡离子Mn4+和Cr3+激活材料