转移矩阵法求解纤锌矿Ⅲ族氮化物多层核壳纳米线中的界面光学声子

来源 :内蒙古大学 | 被引量 : 0次 | 上传用户:10198223
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纤锌矿GaN及其三元混晶广泛用于光电器件,可通过调制材料组分改进其性质.核壳结构纳米线(CSNW)利用集成度高,可克服短沟道效应以及通过减少表面缺陷获得高电子迁移率等优势在纳米器件领域展示出应用前景.多层核壳结构纳米线(CMSNWs)常用作发光二极管、太阳能电池以及晶体管的功能单元.在低维多层体系中,界面光学声子(IOP)与电子的相互作用对光电性质有重要影响.本文以GaN-CSNW为例讨论纤锌矿CMSNWs中界面光学声子的转移矩阵法(TMM)求解.本文主要依据介电连续模型和单轴晶体模型,讨论多壳层核壳纳米线中IOP的转移矩阵数值解法及其特点.本文以三层及四层GaN/Inxa1-xN/InyGa1-yN/InzGa1-zN核壳纳米线为例,验证方法的适用性,并进一步讨论CMSNWs中IOP的种类、支数,及其存在条件、色散关系和声子静电势等特点.计算表明,转移矩阵法适用于CMSNWs中IOP的求解.IOP以界面的可能组合的方式分类,其特征如下(1)体系材料的特定组分下,存在特定种类的IOP,且各自有特定频率区间;(2)纤锌矿Ⅲ族氮化物CMSNWs中IOP的色散关系是所有相邻两层材料所组成的核壳纳米线(CSNW)中界面光学声子色散关系的组合,从而获得n界面CMSNWs中最多有2n支IOP的规律,与层状体系中的2n原则相符;(3)IOP静电势峰值的位置取决于多层核壳纳米线中各层材料In组分的大小.基于TMM,我们可以进一步讨论纤锌矿Ⅲ族氮化物CMSCWs中IOP相关的光电性质.
其他文献
本文采用介电连续模型和改进的无规元素等位移模型研究了球形核壳量子点中光学声子模的三元混晶效应。首先,我们对含三元混晶的核壳量子点中界面/表面光学(IO/SO)声子模的色散
ZnO作为一种重要的Ⅱ-Ⅵ半导体材料已被应用于诸多领域:光催化处理污水,气敏传感器,压电器件,太阳能电池,生物工程等。ZnO是一种直接带隙的宽禁带氧化物半导体(Eg=3.37eV),具有独特的电、光以及电化学性能。在本文的研究中,采用水热法制备了形貌可控的ZnO微纳材料,详细开展了 ZnO微纳结构的物性表征,并将其应用于光催化剂、气敏传感器及其染料太阳能电池散射层中,具体内容如下:1.采用水热法我
目前二维半导体材料受到广泛关注,过渡金属硫化物,磷烯,砷烯等二维材料因其良好的电学、光学等性质而被广泛研究。  鉴于二维半导体材料的电子器件在实际应用领域的要求,对电子