强竞赛图的外孤4泛圈点问题

来源 :山西大学 | 被引量 : 0次 | 上传用户:protosser
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一个竞赛图是任何两个顶点均相邻的定向图.称有向图D是泛圈的,如果它包含从3到|V(D)|的每个长度的圈.称有向图D的一条弧是k泛的,如果它属于每个l-圈(k≤l≤|V(D)|).当k=3时,也称该弧是泛圈的.称有向图D中的顶点u是外弧泛圈点,如果它的每条外弧是泛圈的.本文主要研究强连通竞赛图中的外弧4泛圈点问题.在2000年,Yao等人首先提出并证明了每一个强连通竞赛图存在一点u使得u的每条外弧都是泛圈的.在2005年,Yeo证明了每一个3-强连通竞赛图中存在两个不相同的顶点x,y使得x与y的所有外弧都是泛圈的.在2006年,李瑞娟等人又证明了每个k强连通竞赛图至少包含k+1个外弧4泛圈点.在2010年,郭巧萍等人证明了每个k强连通竞赛图至少包含k+2个外弧5泛圈点.文章在前人的基础上主要讨论了2-强连通竞赛图和k(k≥3)-强连通竞赛图中的外弧4泛圈点的问题.  本文主要分为四章.第一章是预备知识,我们介绍了一些本文中将要用到的图论方面的基本概念和记号.  第二章回顾了竞赛图中相关的一些结果.  第三章,我们研究了2-强连通竞赛图中的外弧4泛圈点问题,主要结果如下:  设T是一个δ+(T)≥3的2-强连通竞赛图,M是T中外度最小的点的集合.若|M|≠3且对任意v∈M有σ(T-v)=2,则T中至少有四个外弧4泛圈点.  第四章,我们研究了k(k≥3)-强连通竞赛图中的外弧4泛圈点问题,主要结果如下:  设T是一个k(k≥3)-强连通竞赛图.若δ+(T)≥k+1,则T中至少有k+2个外弧4泛圈点.
其他文献
设G是无向简单连通图,A和B是G的两个不相交的顶点子集,定义[A,B]为一个端点在A中,另一个端点在B中的边所成的集合.S=[X,Y]称为G的边割,其中X(∈)V(G),Y=V(G)X.设k是正整数,若G-S的每
Tychonoff乘积、逆极限与σ-积是一般拓扑学中三类重要的乘积性质。自上世纪80年代末以来,国际著名拓扑学者G.Gruenhage,K.Chiba,Y.Yajima,H.Tanaka等对以仿紧为代表的用覆盖刻