论文部分内容阅读
如今,在微机械电子系统(MEMS)领域,人们对微流体系统的研究逐渐升温,即化学分析系统和微制剂系统。微泵是微流体系统的基本组件之一。最近几年研制出几种基于不同的驱动原理和用途的微泵,有的已经进入实用阶段。 本文对微泵进行了理论分析,建立了微泵模型的基本方程,求出了流量、压力。建立了静电、压电驱动的微泵薄膜变形的模型,推导出了圆形薄板固有频率。 提出了一种双腔微泵结构设计方案,这种泵分为上下两个泵腔,上面泵腔由腔壁与上下两层薄膜围成,每层薄膜上都有一层PZT片;而下面泵腔则由腔壁与围成上面泵腔的下层硅薄膜及一层玻璃围成,出入口处采用环形阀门结构,泵膜和阀片的材料为硅。泵体半径为3mm,泵膜半径为2mm,泵膜厚度为5μm,PZT片厚度为10μm,泵体高度为1000μm,方波驱动电压为50V,驱动频率为4000Hz。 建立了微泵膜片的有限元模型,采用直接耦合法模拟分析了微泵膜片在压电驱动下产生的形变和由此引起的微泵腔体体积的变化,得出了膜片厚度、形状、和压电驱动电压对微泵腔体体积变化的影响。微泵膜片的动态特性与微泵的工作效率密切相关,本文得出了膜片振动的固有频率与膜片厚度之间的关系,并进行了模态分析、瞬态动力学分析、谐响应分析。微泵的流量和压力是微泵的重要工作参数,应用有限元流固耦合分析对流体进行模拟,经过分析计算,得到微泵的输出流量为145.5μl/min,并模拟出流速和压力的变化情况,从而较为全面的认识了微泵系统的流体特性。等效电路方法是一种建立微系统模型的方式,对微泵系统进行等效电路模拟,得出微泵输出压力以及流量变化情况。序贯耦合法是有限元耦合分析方法之一,适用于静电—结构耦合场。应用序贯耦合法对静电驱动微泵进行模拟分析,得出了膜片厚度、驱动电压以及泵腔高度的变化对泵腔体积变化的影响,研究结果为静电驱动的微泵结构设计提供了依据,具有一定的参考价值。