论文部分内容阅读
随着全球能源的日益紧张和环境污染的加重,各国对清洁能源愈发重视。全世界范围内,掀起了利用太阳能的风潮,引起了太阳能行业以及其产业链上一系列产品的迅猛增长。近年来,我国对太阳能的研制取得很大的发展,也促使了作为太阳能的主要原料的多晶硅产业的迅猛发展。多晶硅必须经过切片工艺才能应用于光伏行业,而该过程中需要大量使用多晶硅切削液,因此必然使得多晶硅切削液用量的激增,一般多晶硅切削液在切割机内重复使用几次以后会逐渐失效。国内外采用的多晶硅液主要是水性切削液,它是一个包括聚乙二醇、碳化硅的混合物。因此太阳能行业这一整个产业链的迅速发展最终结果必然造成大量废切削液的产生。多晶硅水性废切削液是一种黑色稠状、粘度极大的固液混合物,其COD值大大超过废水排放标准,是禁止排放的,而目前没有找到合适的废液处理回收办法,使国内厂家废液大量堆放,随着生产的进行,长年累月堆积如山,已成为企业继续发展的拦路虎。因此企业迫切要寻找一个简单而有效的回收方法,从废切削液中回收聚乙二醇、碳化硅。本文分析并测定了多晶硅水性切削液中的主要杂质及含量。1、杂质主要包括硅、Fe2O3、以及少量其它金属氧化物;2、酸法测定结果为总的杂质含量,并确定了以混酸(HF+HNO3+HCl)作为测定SiC总杂质含量的反应液。3、碱法测定结果即为硅杂质含量,确定了以40%的NaOH作为测定硅杂质的含量反应液;4、Fe2O3含量测定采用吸光光度法。5、最终得出碳化硅新砂SiC含量为99.79%,Fe2O3含量为0.09%,其它金属氧化物为0.12%。废砂SiC含量为88.85%,Fe2O3含量为1.53%,Si杂质含量为9.42%,其它金属氧化物含量为0.20%。碳化硅微粉粒径是用于配制切削液的重要指标,最后用激光粒度分析仪对碳化硅微粉粒径进行了评价,得出废切削液的粒径不达标,且小于1μm的颗粒为硅杂质,粒径分布于4~14μm颗粒与碳化硅新砂愈接近愈,硅杂质对碳化硅微粉的包覆愈小。本文主要是采用固液分离方法再生PEG(聚乙二醇)。比较了减压蒸馏、过滤浓缩、重力沉降、离心沉降回收PEG的工艺。除减压蒸馏外,均需用水稀释废切削液后进行固液分离,才能得到澄清液,将其煮沸10min,冷却,静止3到5天,絮凝物沉降于底部,倾滗上层澄清液得到不含Fe+3PEG溶液,然后于T=100℃浓缩、干燥得到PEG产品。其中以过滤浓缩和离心浓缩工艺得到的PEG再生率分别大于50%和60%,且指标与PEG新液最接近。本文对再生PEG后的剩物进行了再生碳化硅的工艺研究,主要除去其中的多晶硅杂质和Fe2O3杂质。分别采用酸溶和碱溶法。对于酸溶法的研究结果:1、单一氢氟酸除杂得到的碳化硅微粉可使Fe2O3降到0.15%以下,但产品中仍含3%以上多晶硅杂质。2、对于混酸法,通过单因素和正交实验探讨了除硅及Fe2O3影响,以硅及Fe2O3总的含量为主要指标,得出除杂的影响因素顺序为:HNO3浓度>HF浓度>反应时间>反应温度,除杂较优水平为:HF浓度3mol/L,HNO3浓度为2.0mol/L,反应温度为35℃,除硅时间70min;对于碱法除杂结果:分别研究了除硅及Fe2O3的先后顺序工艺。1、两种工艺顺序对除硅条件影响不大,对除硅条件进行了正交实验优化,得出其除硅影响因素顺序为:反应温度>NaOH浓度>反应时间,较优水平为:NaOH浓度3%,温度70℃,除硅时间2h。2、先除硅后除Fe2O3工艺的除Fe2O3条件简易。酸法除杂可使硅杂质降至0.3%以下,碱法可使其在0.5%以下,均能使Fe2O3含量和粒径分布达到指标,能用于重新配制切削液要求。