论文部分内容阅读
随着人工智能、通信技术、网络技术和电子元器件等领域快速发展,基于相关领域的技术成果研发并具有提供丰富智能教育服务的教育机器人成为了教育信息技术领域热点研究课题。教育机器人在许多应用情景中,需要进行自身的位置发现或对目标物体位置的定位才能为服务对象提供智能教育服务。当教育机器人在室外时,可以利用全球卫星导航定位系统(GNSS)为其提供相关的定位服务。但是,关于教育机器人的室内定位目前还没有成熟的解决方案。由于无线信号受到建筑物、室内物体,人为活动和信号干扰等不利因素影响,基于教育机器人的室内定位研究已经成为了一个难题。许多的科研院所、高校、企业等都投入了资源研究室内定位,以及在教育机器人上的应用。面向教育机器人的室内定位需要在复杂的室内环境中实现,以便教育机器人能够提供各种智能服务。单一的室内定位技术已经不能很好地满足这样的服务需求,选用多种定位技术进行融合定位教育机器人就很有必要。随着WiFi的应用普及,使用教育机器人的室内环境中大多有WiFi信号。另一方面,由于物联网的广泛应用,RFID技术也得到了推广。在兼顾成本、适应性及应用推广的前提下,本研究结合WiFi和RFID技术,提出了一种有效的面向教育机器人室内无线指纹融合定位的解决方案;为了能够对室内活动的教育机器人进行更好的定位,本文提出了一种有效的异构无线网络空间布局方案,通过粗细指纹结合,融合WiFi和RFID无线指纹定位技术;本文提出了基于RSS能势场导航路由决策定位算法,实现了教育机器人在室内多场景中基于定位服务的应用。本文主要创新点及贡献如下:(1)在无线网络空间布局设计中,本文提出了异构无线网络布局思路,在WiFi网络覆盖的大区域,利用三角形结构布局无线接入点(AP);在RFID网络覆盖的小区域,提出了利用多种多边形组合而成的结构布局电子标签(Tag)方案。地面标签布局采取了多粒度指纹结合的布局方式,根据不同定位精度需要可调整指纹粒度间隔。(2)在不同区域获取的数据可能会受到各种干扰因素影响,导致信号特征发生变化,因而采集RSS的数据不能直接用于教育机器人的定位,本文提出了一种有效的数据均值叠加平滑处理方法,首先对每一个采样点的独立AP进行RSS均值叠加并进行平滑处理,在每一个采样点上获取相对优化的RSS均值;其次在其他AP覆盖区域的每个采样点上对RSS信号进行均值平滑处理,在不同定位区域对不同AP的RSS信号进行叠加再均值平滑处理,获取在不同区域的RSS数据分布特征;最后根据不同AP的RSS均值数据进行联合定位。(3)基于电子标签布局的导航定位研究,本文提出了基于RSS能势场导航路由决策定位算法,通过算法实现了教育机器人自主导航到指定的服务位置。(4)本论文研究的室内定位方法成功应用于本团队研发的三款教育机器人,是构成它们自主避障、测距和路径规划的能力的关键技术。