论文部分内容阅读
离子通道是一种能够调节细胞膜两侧离子流的融合蛋白,它是神经、肌肉和其它组织细胞膜兴奋的基础,也是生物电活动的基础。钾离子通道是迄今为止类型最多的一类离子通道,它们广泛地分布于骨骼肌、神经、心脏、血管、气管、胃肠道、血液、内分泌和腺体等细胞。KCNQ基因编码的钾离子通道家族是电压门控钾离子通道的一个重要分支,在心脏中大量表达,在内耳也有分布。KCNQ1及其辅助亚基minK形成的KCNQ1/minK复合体能够产生延迟外向整流钾电流IKS,该电流帮助终结心肌细胞中的动作电位,KCNQ1基因若发生突变,就会引起该通道的功能紊乱,从而引起心脏长QT综合征,即LQTS,最终导致严重的心律不齐,室颤甚至心脏休克。目前发现许多疾病与KCNQ基因突变或其编码的钾离子通道功能失调有关,鉴于这些原因,弄清楚KCNQ1通道的相关特性,无论对于离子通道学,还是临床医学都会具有很大的贡献。本文在HEK293细胞上研究了KCNQ1突变基因L191P导致LQT1的机制。在KCNQ1基因中有超过100种突变是引发1型LQTS(LQT1)的主要原因,有报道发现,位于1 91位点的亮氨酸突变L1 91 P能够直接引发LQT1,该突变点位于KCNQ1基因的S2-S3连接区域,大约有16%的LQTS突变点位于该区域中。在电生理实验结果中,我们发现L1 91 P/minK产生的电流远远小于正常的WT/minK的电流,电流-电压(IV)曲线中显示L191 P/minK的电流减少到WT/minK的电流的一半以下,但是电导-电压(GV)曲线中显示没有明显的变化。在免疫荧光成像结果中,我们却发现L191 P使得正常的KCNQ1蛋白上膜量大大降低,因此推断该突变通道因上膜量剧烈变化使得心肌钾电流IKs大大减小,从而影响动作电位复极化,导致LQTS的产生。为了更进一步了解这种上膜量的变化原因,我们将这个点的氨基酸残基Leu突变成疏水性不同的氨基酸(Phe>Leu>Val>Trp>Ala>Pro>Lys>Asp),发现这些突变随着其疏水性的减弱,其上膜能力也逐渐减弱。通过建立E(?)M模型,我们归纳出这一规律遵循的波尔兹曼公式,应用于因能量变化而改变膜蛋白上膜效率的情况。同时,通过建立二项式分布模型,我们解释了dominant-negative效应的存在是LQT1表型存在的本质。本文还在非洲爪蟾Xenopus laevis卵母细胞上研究了乙醇(酒精)阻断KCNQ1通道的机制。乙醇对人体具有广泛的药理学影响,研究者们知道乙醇对脑、心脏和肝脏等的功能会产生不良影响,但不了解它起作用的机制。我们通过双电极电压钳检测,结果表明乙醇能够特异性阻断IKs电流,与其类似的其它直链烷醇亦能够阻断该通道,而且烷醇链长越长,相同浓度下阻断能力越强。这种阻断效果不仅具有电压依赖性,还同时兼具关闭态阻断和开放态阻断的特点,说明酒精阻断KCNQ1通道的作用位点可能既存在于细胞外,也存在于细胞内。通过突变扫描比对,我们还发现KCNQ1上氨基酸Ile257在酒精等烷醇对KCNQ1通道的阻断过程中起着重要的作用。我们还借助MedLab生物信号采集处理系统,连续测量注射不同浓度乙醇的小鼠心电图,结果表明一定浓度下乙醇(较低或者很高浓度)能够阻断心肌钾离子通道,从而延迟动作电位的复极化,进而延缓心率;而某一特定浓度下的乙醇(较高安全浓度)能够刺激心肌钾离子通道的开放,从而加速动作电位的复极化,进而加速心率。我们利用了“口袋”模型进一步阐明烷醇和KCNQ1通道相互作用机制,这对以KCNQ1通道为靶点的药物研究有着重要意义。