论文部分内容阅读
矿物能源的过度开采和使用已经给社会的发展带来了一系列的问题,例如能源短缺,温室效应,酸雨和雾霾等。有机太阳能电池是一种廉价的可再生能源,因其具有易制备,质量轻,柔性和原材料丰富等优点而受到了人们的广泛关注。三元体异质结有机太阳能电池通过在给受体主体系中掺杂近红外窄带隙材料,能够扩展有源层的吸收光谱的响应范围,从而提高有机太阳能电池的能量转换效率,这成为了近期的一个研究热点。本文分别研究了基于P3HT:PBDTTT-C:PC71BM体系和P3HT:DIB-SQ:PC71BM体系的三元体异质结有机太阳能电池。通过在P3HT:PC71BM体系中掺杂窄带隙聚合物材料PBDTTT-C, P3HT:PC71BM二元体系的太阳能电池的性能得到了提升。当PBDTTT-C的掺杂浓度为6wt%时,有机太阳能电池的能量转换效率达到2.48%,比二元有机太阳能电池的性能提高了27%。有机太阳能电池能量转换效率提升的主要机理可以归因于通过在P3HT:PC71BM体系中掺杂PBDTTT-C,有源层的吸收光谱扩展到了近红外区域,平衡了光子的捕获和载流子的传输。众所周知,聚合物与聚合物混合的薄膜通常会出现宏观尺度或微观尺度的相分离,这不利于有机太阳能电池效率的提升。因此,在接下来的工作中我们研究了小分子材料DIB-SQ对P3HT:PC71BM体系太阳能电池性能的影响。通过掺杂1.2wt%的DIB-SQ,优化后的P3HT:PC71BM体系太阳能电池的能量转换效率从3.05%提升到3.72%,效率相应的提升了22%。我们测量了P3HT, DIB-SQ和P3HT:DIB-SQ溶液在700nm处的时间分辨瞬态光致发光光谱。P3HT溶液的在700nm处的寿命为0.9ns, DIB-SQ的为4.9ns,而P3HT:DIB-SQ的混合溶液则为6.2ns,这证明了P3HT与DIB-SQ分子之间存在能量传递过程。图41幅,表4个,参考文献106篇。