基于植酸—金属螯合作用制备超浸润材料及其油水分离应用的研究

来源 :中国科学院大学(中国科学院宁波材料技术与工程研究所) | 被引量 : 0次 | 上传用户:wmrik
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
越来越多的溢油事故对我们的生态环境尤其是水体环境造成了灾难性的影响。近年来,应用于油水分离领域的特殊超浸润材料受到了广泛的关注。由于这些超浸润材料对水与油有着截然相反的润湿性,比如疏水/亲油性、亲水/疏油性或两面不同的润湿性。因此超浸润材料在去除油水混合物中的一个相的同时,可以排除掉另一个相,从而实现选择性的油水分离。此外,通过调节材料的表面化学和表面结构,利用两者的协同作用可以进一步促进超浸润行为,从而实现不同的分离效果并提高分离效率。本文基于植酸和金属的螯合作用制备了两种不同的超浸润材料用于油水分离。本文完成的主要工作如下:第一种为金属网表面的植酸-硅氧烷超疏水涂层。选取植酸和乙烯基硅氧烷作为修饰剂,利用一步法在金属网表面制备超疏水/超亲油涂层,与水的接触角为154°±2°,滚动角为6.5°±2°,粘附力为0.1405m N。用扫描电子显微镜观察涂层形貌可以发现,PA/VTES涂层中的纳米小球尺寸与涂层的润湿性有着紧密的联系,且可以通过植酸和乙烯基硅氧烷的比例进行调控。该超疏水/超亲油PA/VTES涂层能用于油水混合物的快速分离,分离效率和分离通量分别高达98.3%和1.5×104 L m-2 h-1。此外,在植酸的缓蚀能力和超疏水涂层的共同保护下,修饰后的金属网能经受住48小时的盐雾测试,且其电化学性能和海水浸泡测试也表现优异。同时,涂层具有较好的机械性能,在经过胶带剥离和砂纸磨损测试后仍能保持超疏水性能。第二种为植酸-金属离子-PDMS制备的Janus织物。通过植酸和金属离子之间的螯合作用在原始织物上先在构造微纳米粗糙结构,然后浸水来形成保护层,接着在单面喷涂PDMS溶液并固化,最后得到两面润湿性不同的Janus织物。以接触角测量仪对Janus织物的润湿性能进行研究发现,疏水层的润湿性能通过调节PDMS喷涂量来进行控制。其中,制备得到的Janus fabric-2一面为亲水性,一面为亚稳态疏水性,水滴在疏水面的初始接触角为145.8°±0.7°,在6.5s内水滴会逐渐渗透到织物内部;而Janus fabric-5一面为亲水性,另一面为稳定的疏水性,水滴在疏水面的接触角为154.4°±0.4°,且能在织物上长时间保持球状不会渗透。经过对Janus织物的研究发现,具有不同润湿效果的Janus fabric-2和Janus fabric-5具有不同的应用方向。Janus fabric-5具有可切换浸润的能力,能通过简单翻转织物对水/轻油、水/重油的混合物进行分离,分离效率能达到99.3%,分离通量大于2.38×104 L m-2 h-1。Janus fabric-2的疏水层和亲水层能协同作用,实现水的定向传输,可运用于油下收集水、破乳和吸湿排汗这三个方向。制备的Janus织物具有优异的机械强度,经过胶带剥离、砂纸磨损、超声波剥离和机洗测试后,依旧能发挥其正常的作用。
其他文献
基于解耦式主动脚轮的移动机器人是一类新型的全向移动机器人,特别适合狭小空间的货物搬运,具有很高的社会经济价值。该类机器人特殊的构型,在实现全向移动功能的同时也给系统造成了驱动冗余的问题,造成运动控制的困难。为促进基于解耦式主动脚轮全向移动机器人的发展,使其能够真正应用于实际工业中去,本文针对该类机器人关键技术中的运动控制进行深入研究,提出分层控制的设计理念,上层实现机器人运动的跟踪控制,下层实现运
癌症仍然是世界上最具破坏性和致命性的疾病之一,癌症的早期诊断是早期治疗的前提。磁共振成像(MRI)具有高软组织分辨率和高组织穿透性,作为一种无创、无辐射的技术手段已被广泛应用于癌症诊断。为了高质量成像效果,具有低毒副作用、高弛豫性能的智能型造影剂一直是人们所追求的。铁元素的长期生物相容性使氧化铁纳米粒子成为MRI造影剂的研究热点。同时氧化铁的磁热效应可以有效地将MR成像与磁热治疗结合起来。因此本论
冲蚀磨损是指松散的固体小颗粒以一定的速度和角度对材料表面反复冲击造成的一种材料损耗现象。冲蚀磨损现象广泛存在于机械、冶金、能源、建材以及航空航天等工业领域,是造成材料破坏或设备失效的重要原因之一。在材料或零部件表面涂覆具有抗冲蚀性能的涂层能够大幅增强材料或零部件的抗冲蚀性能,起到提升材料使用性能、延长服役寿命的作用。随着航空航天朝着大推力高推比的方向迅猛发展,钛合金压气机叶片在砂粒、灰尘、冰粒等恶
在航空发动机高压压气机最后两级叶片由于工作温度较高,通常使用镍基高温合金作为叶片材料。在海洋环境热力盐耦合作用下,镍基高温合金极易产生严重的腐蚀问题。现在常见的飞机发动机叶片防护涂层的主要成分是M(M=Ni,Co)CrAlY。但是在高盐环境下,富Cr的涂层会发生非常严重的腐蚀,无法对基体起到保护作用。所以为了避免高盐的环境对飞机发动机造成严重的腐蚀,使工件依旧能保持良好的工作状态,急需开发一种不含
全球变暖对现代社会构成了严重的挑战,而人类对制冷的需求却越来越大。目前主流的气体压缩制冷所使用的烃类制冷剂都会引起温室效应。因此,寻找对环境友好的替代制冷技术来摆脱这种恶性循环变得十分紧迫。近年来,基于相变材料热效应的固态制冷技术引起了人们极大的兴趣,相应的热效应来源于固态材料在施加/去除外场下释放/吸收的热量。Ni-Mn基Heusler型变磁形状记忆合金因具备等温熵变大、滞后小和磁弹耦合等优异特
随着人们对全球变暖和能源危机的担忧日益增加,传统的合成制冷剂会对环境和能源会造成不利影响,制冷行业面临的主要挑战是减少能源消耗和有害气体排放。相比于传统的气体压缩制冷,磁制冷是一种新型的制冷技术,它采用固态磁性材料作为制冷工质,不会产生有害气体对环境无破坏作用,且具有噪音小、效率高、可靠性高等显著优点,因此也被誉为绿色制冷技术。旋转磁热效应是一种具有各向异性的磁热效应,这种磁热效应的产生只需材料在
铁基软磁粉芯在电磁转换、传递以及存储方面占据着不可或缺的地位。其中非晶粉芯具备饱和磁感应强度高,宽频条件下磁导率稳定性好,电阻率高,损耗低等优点,且价格较坡莫和钼坡莫粉芯低廉,成为21世纪具备广泛应用前景的一种软磁材料。然而在现有磁芯大功率应用环境中,软磁材料在受到高频交流电磁化的同时,还受到直流分量对其产生的叠加影响。在这种存在大直流偏置电流的情况下,软磁材料易达到饱和,导致磁导率、损耗、品质因
热电材料是一种可以利用材料内部载流子输运实现热能和电能相互转换的功能材料。SnSe晶体作为一种性能良好的新型热电材料,具有环境友好、原料丰富等特点,近年来受到研究人员广泛关注。但关于其本征性质问题仍有待研究,例如多晶SnSe载流子浓度低以及n型单晶SnSe热电性能择优取向的问题。本文以SnSe晶体为研究对象,采用熔融热压法制备SnSe多晶,采用温度梯度法制备SnSe单晶,分别对其电热输运性能进行了
环氧树脂是一种具有化学性质稳定、电绝缘性能良好、粘结性强、力学性能优良等特点的热固性树脂,作为粘结剂、涂料、电子封装材料等被广泛应用在航空航天、船舶汽车、电子器件、建筑设施等诸多领域。但是由于环氧树脂固化后形成的三维交联网络结构,使得环氧树脂作为涂层应用时脆性大,抗磨性能不佳,导致涂层在摩擦过程中易被剥离脱落,失去对涂层基底的保护作用。因此,改善环氧树脂涂层的摩擦学性能是一个亟需解决的问题。填料改
激光熔覆是利用高能激光作用下的材料快速熔凝工艺以实现高性能材料/涂层制备的先进加工技术。该技术已经广泛应用于增材制造、裂纹修复再制造、特种材料/涂层制备等领域,在航空、航天、航海等领域零部件制造、修复及防护涂层制备中起到重要作用。然而,单纯依靠调控激光熔覆工艺参数难以解决材料中存在的一些问题,如气孔、残余应力等,难以突破材料的固有极限,形成高性能的零件与涂层。基于此,本论文对激光熔覆组织性能调控方