分布式并行计算实现人体图像重采样加速处理

来源 :重庆大学 | 被引量 : 0次 | 上传用户:xvgpzz6h
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数字化人体研究,是医学与信息技术、虚拟现实技术相结合的科技性研究课题,通过对人体信息多模式集成的研究,从而实现人体结构和功能的数字化、可视化,最终达到对人体功能的精确模拟。在数字化人体模型建立的过程中,随着切片加工精度的提高,大规模数据或者海量数据的处理是伴随数字化人体研究要解决的一个关键技术,如何提高人体切片图像数据的处理速度是目前研究的瓶颈之一。因此,寻求新的技术方法解决这一问题具有重要意义。本文首先对目前常规采用的数字化人体图像重采样工具软件进行了分析研究,研究发现现在常用的商业软件都只能在单机上实现二维图像的重采样,在大型计算机或图形工作站上可以获得较快的处理速度,但在微机上进行处理需要较长的重采样时间,难以满足实时处理与显示的需求,严重阻碍了数字化人体数据集在教学与临床上的应用。针对当前数字化人体图像重采样研究中的瓶颈问题,本文对数字化人体图像数据重采样技术的理论、方法进行了全面、细致的研究,采用GDI+技术在单机上进行了实现,并在重采样处理中引入流水线技术,将磁盘I/O操作与图像运算操作并行处理,使重采样的速度有了一定的提升。但是由于软件在单机上读取图像数据时磁盘I/O操作的串行处理无法进一步改善,使得软件运行速度提升的幅度有限,依然无法满足实时处理与显示的需求,仍需进一步改进。针对在单机上磁盘I/O操作的串行处理问题,本文通过对数字化人体图像重采样处理特点以及分布式并行计算的研究,发现数字化人体图像局部数据之间的相关性较小,较少地涉及学科知识和人工干预,完全满足分布式并行计算的特征。本文利用了校园网内连接的大量个人计算机,通过Socket编程进行合理的任务分配与调度,以较低的成本搭建了高性能的数字化人体图像海量信息计算平台,实现了对数字化人体数据集数据的高速处理,实验结果表明,通过分布式并行计算能够大幅度减少重采样时间,提高重采样加速比,完全能够满足实时处理与显示的需求。但当参与重采样的客户机数量达到一定规模时,算法中服务器上串行处理部分和处理机之间通信开销的瓶颈逐渐凸现,总的处理时间达到并保持在较低水平,加速比也趋于平稳。分布式并行计算系统所面对的大批量的客户机以及计算机网络具有许多不确定的因素,这就对分布式并行计算系统提出了适应性的要求,因此本文对于分布式并行计算系统的可伸缩性、可扩展性进行了研究,实现了系统的可维护和可进化,完全能够适应客户机规模动态变化的需求。并对分布式并行计算系统的负载平衡技术进行了初步的探索性研究,能够适应客户机节点在运行的过程中资源的动态变化,但负载平衡采用的是被动探测的方式,运行效率还不够高,还需对算法进行进一步的深入挖掘,提高对系统异常的响应速度。实验表明,本文所做研究能够适应客户机规模和计算资源的动态变化,大幅度减少重采样的时间,提高重采样加速比,满足实时处理与显示的需求,为数字化人体数据集的进一步三维形态结构分析研究奠定了基础,促进了数字化人体数据集在教学与临床上的应用,具有较高的研究应用价值。
其他文献
随着半导体制造工艺的提高,芯片集成的晶体管数量的增加,计算机系统更易受到射线、高能量粒子(电子、中子、质子等)的影响,从而增加软错误的出现概率。软错误使得处理器的可
随着多媒体技术和网络技术的发展,流媒体正在成为推动未来宽带应用的主动力。但在现有条件下,流媒体对带宽资源要求高且服务时间长,在传统的C/S模式下服务器很容易成为系统的
学位
在对基于模糊聚类分析的图象分割方法的现状和存在问题的深入分析和研究的基础上,提出了一套在边缘信息指导下的模糊聚类的图象分割方法EFCM(Edge-based Fuzzy C-means Clust
近年来,游戏的图形质量已发展到近乎极致的地步,人工智能(AI)已经成为决定一款游戏以及游戏开发工作室命运的重要因素。下一代的3D游戏不仅会有优秀的视觉效果,更会像人一样
网格计算的概念是随着高性能计算的应用需求发展起来的,主要是从学术角度出发考虑广域网内计算机资源的共享,从而达到资源的最大化利用。随着互联网近年来的高速发展,网格中的信
随着信息化的不断发展,信息系统在人们的生产和生活中发挥着越来越重要的作用。因此信息系统和其所承载的信息的安全直接影响着人们正常的生产和生活,以及社会的持续稳定发展
排课是研究生部教务管理中一项关键而又繁重的任务。为了提高我校研究生部教务管理的信息化水平与工作效率,减轻研究生部工作人员的劳动强度,科学合理地调度师资与教室资源,
伴随着科学技术的高速发展,高科技医疗影像设备的不断涌现为医疗现代化提供了越来越多的帮助。在X射线断层扫描(CT),核磁共振(MR)等人体解剖结构成像技术日趋完善的同时,功能
随着信息技术的不断发展,Web上的信息量呈爆炸性增长。按照所蕴含信息深度的不同,可以将Web划分为Surface Web和Deep Web两大类。其中,Deep Web是指那些存储在Web数据库里、