论文部分内容阅读
碳纤维增强铝基复合材料具有密度小,比强度、比刚度高,良好的塑性和低热膨胀系数等特点,在航空航天和汽车领域有广阔的应用前景。本文分别采用热压烧结法和坩埚炉熔炼+磁悬浮真空重熔法制备了3mm短碳纤维增强2024铝基复合材料。利用光学显微镜、扫描电子显微镜和EDS能谱和XRD分析技术分析了材料组织微观特征,采用阿基米德原理对材料的密度进行了测量,采用维氏硬度、拉伸试验以及加载卸载法测量了复合材料的常规力学性能和微屈服强度。研究发现:采用真空热压烧结法制备复合材料,最佳制备工艺为450℃烧结温度、50分钟烧结时间和50MPa烧结压力。所制备的复合材料致密度高,晶粒细小,实际密度接近理论密度。短碳纤维大部分呈小角度沿热压压力垂直方向排布,与ɑ铝基体的界面结合良好。真空热压烧结法制备的复合材料及2024基体合金的峰值时效处理工艺(T6工艺)为495℃×2h+180℃×10h。峰时效处理后,3%质量分数镀铜碳纤维制备的复合材料硬度值最大,为167.8HV,较2024基体合金提高10.5%。但是由于短碳纤维表面的镀铜层和Al相互扩散,镀铜短碳纤维表面出现Al2Cu和AlCu金属间化合物的脆性相,在受力后易于脆断,降低了碳纤维与铝基体的结合强度,使复合材料的力学性能下降。真空热压烧结法制备的短碳纤维增强C_f/2024铝基复合材料的热膨胀系数较2024基体合金有显著降低;镀铜碳纤维增强铝基复合材料的热膨胀系数低于相同质量分数的无镀层碳纤维制备的复合材料。原因在于镀铜层形成的较强结合界面对基体膨胀的约束作用更大。磁悬浮重熔不改变传统坩埚熔体搅拌法制备的C_f/2024Sc铝基复合材料中碳纤维在基体中的分布和与基体的结合,重熔后的复合材料中的杂质含量降低、晶界脆性相减少,基体的晶粒尺寸细化,因此,可以进一步提高复合材料的力学性能,表明坩埚炉熔炼后再进行磁悬浮重熔对3%C_f/2024Sc的力学性能改善有利。熔体搅拌熔炼法制备的C_f/2024Sc铝基复合材料的强度、塑性均高于热压烧结法制备的复合材料。磁悬浮重熔复合材料的抗拉强度、屈服强度和弹性模量分别达到505.0MPa、415.3MPa和82.3GPa,均高于传统熔体搅拌法制备的复合材料。不管是否经过磁悬浮重熔,复合材料的微屈服行为相似,微屈服强度随终时效时间的变化规律均与准静态抗拉强度、屈服强度变化规律相似。经过峰值时效处理后,磁悬浮重熔材料的微屈服强度达到310MPa,较坩埚炉熔炼复合材料提高了11.8%。