论文部分内容阅读
遥感影像数据源源不断地被送回地面接收站,面对如此海量的遥感影像,影像配准和融合技术起了关键性的作用。遥感影像的配准是有效地进行数据融合的必要前提,不同几何特性和不同分辨率的影像之间必须进行严格地配准。遥感影像的融合是通过整合优势互补的遥感影像来提高数据的可用度,融合后的遥感影像要比源影像所包含的信息要丰富,从而为后续处理做好了准备。本文重点研究了遥感影像的配准和多光谱与全色影像的融合,针对配准和融合过程中出现的问题提出了相应的改进方法,并对其进行验证、评价、分析。本文主要工作分为以下三个方面:(1)研究常用的遥感影像配准和融合算法的理论和方法,分别对遥感影像配准和融合算法进行比较,并对各个算法的优缺点进行客观分析。相较于其它配准算法,SIFT配准算法有着明显的优势,在不同尺度、旋转、光照等条件下均能检测到稳定的特征点进行配准,其缺点是运算时间长、出现边缘效应;相较于其它融合算法,小波变换融合算法可以进行多尺度融合,进而改善融合后影像的细节,其缺点是出现分块、光谱扭曲、边缘模糊等现象。(2)提出一种基于Canny和PCA改进SIFT遥感影像配准算法。对基准影像和待配准影像分别进行Canny算法检测边缘特征、SIFT算法检测特征点,通过剔除在边缘特征上的特征点减少边缘效应,然后利用PCA进行主成分分析特征点描述符进行降维,最后通过RANSAC剔除误匹配对的方法完成配准,从而剔除大量的边缘响应点,提高算法的运算效率。(3)提出一种基于PCNN的小波变换多光谱与全色遥感影像融合算法。对多光谱影像分别进行IHS变换和PCA变换,IHS变换后得到强度I、色度H、饱和度S三个分量,PCA变换得后到多光谱影像的第一主成分PC1,将全色影像与第一主成分PC1进行直方图匹配得到PAN’,对I和PAN’进行小波变换得到低频分量和高频分量,对低频分量使用加权平均融合规则、高频分量使用改进PCNN的融合规则,然后生成I’,最后通过IHS逆变换生成融合结果。本算法有效地减少了光谱失真的现象也改善了融合的细节。通过大量实验,根据常见的客观评价指标做出比较,可以看出本文改进的算法可以有效地对遥感影像进行配准和融合。