论文部分内容阅读
螺吡喃(Spiropyran)以及其衍生物是常见的光致变色有机化合物之一,由于其在光照射前后分子结构和物理化学性质会发生明显的改变,近年来被引入到各种材料中并广泛应用于生物医药、光电器件等领域。其中基于螺吡喃的光敏聚合物胶束已被开发成生物医药材料,应用到抗肿瘤药物的输送体系中并实现了抗肿瘤药物的光控释放。然而单一的聚合物胶束在药物负载量、生物造影、肿瘤靶向等方面仍存在不足。针对以上在实际应用过程中螺吡喃聚合物胶束存在的缺陷,本论文将聚合物胶束与无机纳米粒子复合,设计制备了两个基于螺吡喃聚合物的多功能光控药物释放体系:(1)设计合成了以中空介孔二氧化硅纳米粒子(HMS)为核、两亲性光敏聚合物PRMS-FA为壳的聚合物纳米复合药物载体(HMS@C18@PRMS-FA)。利用模板法制备合成了HMS,并利用长烷基链C18将其表面修饰成疏水性(HMS@C18)。在AIBN引发下,疏水单体SPMA、含乙二醇的亲水单体MAPEG及罗丹明B衍生物RBM进行自由基共聚,然后在侧链接上叶酸基团,得到具有靶向功能的两亲性光敏聚合物PRMS-FA。通过自组装的方法,将聚合物PRMS-FA包裹到HMS@C18表面,制备得到核-壳型聚合物纳米复合载体HMS@C18@PRMS-FA。该药物载体中HMS内核的中空介孔结构赋予其75%左右的高效载药率。选择阿霉素作为模拟药物,在药物载体于癌细胞内靶向富集后,利用紫外光照控制药物释放,发现药物可有效释放并杀死癌细胞。同时,光敏聚合物所具有的荧光共振能量转移(FRET)性能可用于药物控释过程的实时监控。该核-壳型聚合物纳米复合药物载体整合了功能聚合物以及无机纳米粒子的优点,改善了聚合物胶束药物载体在主动靶向性以及载药性能等诸多方面的不足。(2)在前一体系基础上,引入上转换纳米粒子(UCNP)作为光电内核,并选用980 nm近红外光代替紫外光作为控释光源。通过简便的自由基聚合方法制备得到两亲性光敏聚合物PSMN,并接上叶酸基团,得到具有靶向功能的聚合物PSMN-FA。在UCNP外包裹上可用于载药的介孔二氧化硅层(MUCNP),并在修饰上C18后通过自组装方法得到近红外光响应的核-壳型聚合物纳米载体(MUCNP@C18@PSMN-FA)。在近红外光照射下,UCNP内核不仅可以激发出紫外光,促使光敏聚合物发生降解,实现药物释放;同时其自身的荧光可赋予药物载体生物造影的功能。此外,所用近红外光光源不仅无害而且更具组织穿透性,因此无论在细胞内还是小鼠活体内,都能有效地控制药物释放,达到杀死癌细胞抑制肿瘤生长的目的。引入UCNP内核及选用近红外光改善了控释光源的不足,使该药物载体更具有应用价值。由于螺吡喃及其衍生物在可见光/紫外光照射下,除了分子结构发生变化,其疏水/亲水性质也会发生相应转变,因此近年来被引入到材料表面润湿性改性等领域。本论文中,我们也将螺吡喃这一特性拓展到油水分离方面,开展了多孔泡沫材料表面改性研究:将光敏螺吡喃单体SPMA通过自由基共聚的方法修饰到两亲性三聚氰胺泡沫(MF Sponge)表面,制备得到超疏水性泡沫吸附材料(SP-MF Sponge)。光敏聚合物的修饰不仅未改变三聚氰胺泡沫原本的机械性能及稳定性,还赋予该吸附材料良好的油水选择性。实验结果表明,该SP-MF泡沫吸附材料具有较高的吸附倍率(70-154倍)及良好的热稳定性。同时表面修饰的光敏聚合物在紫外光照条件下可发生疏水/亲水性质的转变,使SP-MF泡沫变成亲水性材料,利用油水排斥作用脱附所吸油类等污染物。所设计的光控脱附相比于传统的机械挤压脱附更具智能性,具有潜在的应用价值。