论文部分内容阅读
随着网络技术的不断发展,应用程序的不断增加,使得网路上存在大量共享的Web服务。然而这些Web服务都是一些细颗粒度的功能简单的服务,无法满足用户复杂的需求。这时就需要一种能将这些简单的Web服务快速组合起来,使之可以满足特定需求的技术,以此来达到软件的重用,减少资源的浪费的目的。为了提高在大量Web服务中快速有效找到面向特定问题的最优Web服务组合的效率,以满足用户日益复杂的服务需求,本文提出一种基于服务质量(Quality of Service,QoS)的Web服务组合粒子蚁群优化算法。论文详细地讲述了从归类共享于网络中的原子Web服务到最终最优方案产生的整个过程中所涉及的技术,算法和模型。本文的主要内容:首先,根据Web服务描述语言(Web Services Description Language,WSDL)文件中服务名和输入输出参数的相似程度将这些Web服务归类为若干个功能相同,接口相同的服务侯选集,并建立简单的Web服务组合模型。其次,根据建立的Web服务组合模型将Web服务优化组合的问题转化为求由多个原子服务构成的基于QoS有向图的最短路径问题。然后,通过对蚁群算法和粒子群算法优缺点的研究,提出兼顾运行时间和效率的粒子蚁群算法,这个算法的具体思想是:先通过粒子群算法快速找出若干条次优路径并初始化路径中的信息素,蚁群算法根据初始化的信息素利用快速收敛的特性求出最优解。最后结合选出的服务侯选集和建立的Web服务组合服务模型,将此算法应用到Web服务组合问题中,并与蚁群算法和粒子群算法在相同实验环境、相同问题下得出的实验结果进行对比。实验表明,该算法相对于传统的蚁群算法和粒子群算法在求解Web服务组合问题中有一定优势。