论文部分内容阅读
压缩成像是利用自然图像的稀疏性同时进行采样和压缩,为解决庞大的数据采样需求和有限的探测器资源之间矛盾提供了新的思路。然而,现有基于压缩感知的压缩成像方法存在成像质量不可控、重建算法计算复杂度过高的问题,限制了系统的成像速度和应用范围。为此,本文以构建快速高分辨率多维压缩成像系统为目的,围绕目标场景反射率信息、时间信息以及深度信息的快速获取,开展基于小波稀疏测量的自适应压缩成像方法在图像、视频和三维成像领域的关键技术研究,以实现自适应的成像质量控制、高效率的测量以及低计算复杂度的图像重建。本文的主要内容包括:针对目标场景反射率信息的快速获取,提出了基于Haar小波稀疏测量的自适应压缩成像方法。首先,通过研究Haar小波兄弟系数间的相关性,提出扩展小波树模型,以描述代表目标场景稀疏信息的显著小波系数的分布规律;然后,根据扩展小波树按照分辨率由低到高的顺序预测显著小波系数位置,并使用DMD加载相应小波基测量模式直接进行测量;最后,通过低计算复杂度的小波逆变换重构目标场景,从而克服基于CS的压缩成像方法的缺点,实现质量可控、高分辨率图像实时重构。与现有基于小波树的自适应压缩成像方法相比,该方法根据扩展小波树进行预测,具有更好的预测准确性;并且,通过剔除基于小波基测量模式的显著系数测量过程中的冗余信息,减少了重构所需测量次数。仿真和实验结果表明,该方法仅用现有基于小波树的自适应压缩成像方法60%-70%的测量次数,即可获得相同峰值信噪比的成像结果。此外,针对彩色成像应用,提出了基于YUV彩色空间小波稀疏测量的自适应彩色压缩成像方法。该方法利用YUV彩色空间中亮度分量与色度分量的依存关系,以及人眼视觉特性,减少了重建所需的测量次数,提高了成像清晰度和色彩准确度。针对目标场景时间信息的快速获取,提出了基于小波稀疏测量的自适应视频压缩成像方法。该方法通过建立多分辨率的视频压缩成像框架,交替进行小波稀疏测量和运动估计,同时去除目标场景的空域冗余与时域冗余,从而实现快速高分辨率视频压缩成像。仿真和实验结果表明,相比传统数字视频成像方法,该方法能够减少85%-95%的采样数据;相比基于2DDWT、3DDWT和2DTV的三种视频压缩感知成像方法,在相同采样率下,该方法的峰值信噪比提高了约20%。针对目标场景深度信息的快速获取,将单光子探测与三维压缩成像相结合,在扩展压缩成像系统维度的同时,提高了其探测灵敏度。首先,构建单光子三维压缩成像系统,建立单光子压缩测量模型,为单光子三维压缩成像提供实验平台和理论基础。然后,通过比较三维场景深度信息与反射信息的稀疏性,得出深度信息比反射率信息在小波域更加稀疏的结论,并据此提出了基于深度小波树的自适应单光子三维压缩成像方法,以实现快速高分辨率单光子三维压缩成像。最后,提出基于深度压缩和自适应哈达玛基扫描的单光子三维压缩成像方法,通过建立深度压缩模型,将三维信息压缩到二维图像中,进一步降低了重建过程的计算复杂度,减少了成像时间;使用自适应哈达玛基扫描进行测量,提高了光子收集效率,进而提高了低照度条件下的系统成像质量。