论文部分内容阅读
脉冲激光器和连续激光器相比,具有短脉宽、高峰值功率等优势,广泛应用于基础研究、通信、医疗以及工业精密加工等领域。基于可饱和吸收体的被动调Q/锁模技术是实现脉冲激光最有效的技术手段。长久以来,如何改善可饱和吸收体的各项性能参数以满足各种脉冲激光器应用需求一直是科研界以及工业界的研究热点。值得关注的是,半导体可饱和吸收镜(SESAMs)的研制成功是脉冲激光技术发展过程中的一项重大突破。受益于精确而成熟的半导体材料生长工艺以及针对器件本身逐渐形成的一套完整的非线性调控方案,到目前为止,SESAMs仍然是使用最广泛和商业化程度最高的可饱和吸收器件。然而,受限于吸收层材料的选择以及器件结构,SESAMs在脉冲激光应用上仍然存在一些瓶颈,比如工作带宽窄(~100 nm),工作波长难以拓展到3μm以上,因此限制了其在宽带可调谐以及中红外脉冲激光器中的应用。随着对脉冲激光器需求的不断提升,业界迫切需求一种稳定、宽带、参数灵活可控的可饱和吸收器件。本文以此为出发点,首先研究了单壁碳纳米管(SWNTs)的超宽带可饱和吸收效应,从最基本的低维材料入手,发掘SWNTs在紧凑、高可靠性的超宽带可调谐锁模激光器中的应用潜力。其次,本文作者系统研究三维狄拉克半金属砷化镉(Cd3As2)材料在近红外波段的可饱和吸收效应以及脉冲激光应用,进一步扩展Cd3As2薄膜作为可饱和吸收体的适用范围。最后,本文作者深入研究了基于三维狄拉克半金属Cd3As2材料的可饱和吸收器件的参数调控特性,分别利用电诱导热效应以及元素掺杂方法对其非线性参数进行主动和被动调控,进一步推动了 Cd3As2可饱和吸收器件的实用化进程。具体的研究内容如下:1、利用液相剥离方法制备了大面积、高质量的单壁碳纳米管可饱和吸收体,并通过泵浦-探测装置和平衡探测系统对其超快动力学过程及可饱和吸收特性进行表征。结果表明,管径分布在~1.3-1.6nm之间的碳纳米管可饱和吸收体在1.6μm-2.1 μm范围内均具有明显的可饱和吸收特性。进一步,基于单壁碳纳米管可饱和吸收体的宽带非线性特性,通过搭建铥/钬共掺光纤激光器以及设计高效率滤波系统,获得拥有200nm(1860nm-2060nm)波长连续调谐能力的锁模光纤激光器。2、本文作者首次研究Cd3As2薄膜在近红外波段的宽带光响应以及脉冲激光应用。首先,使用分子束外延技术(MBE)生长出高质量的Cd3As2薄膜,并使用非简并-泵浦探测装置研究了其在近红外波段下(1-2 μm)的超快光生载流子动力学过程,给出Cd3As2薄膜在近红外波段下的光生载流子弛豫时间在5 ps左右。其次,利用平衡探测系统,具体表征出Cd3As2薄膜在1.96μm和1.56μm波长下的可饱和吸收性能参数,其调制深度分别为3.5%、5.1%,饱和强度分别为12 MW/cm2、67MW/cm2。最后,基于Cd3As2薄膜(300nm厚)构建“三明治”式光纤集成可饱和吸收器件,利用该器件,本文作者分别在铥/钬共掺、掺铒以及掺镱光纤激光器中实现稳定的1.96 μm、1.56 μm锁模脉冲输出以及1.06 μm调Q脉冲输出,在实际应用中表明Cd3As2可饱和吸收器件具有超宽带工作响应。3、利用分子束外延技术和电子束蒸发技术制备电接触Cd3As2薄膜可饱和吸收器件。器件使用传统的Ⅲ-Ⅴ族化合物砷化镓作为衬底,具有很好的生长工艺兼容性。在电流诱导的温度变化下,可饱和吸收器件的调制深度可以实现大范围调控。这种通过简单的平面结构设计即可实现的主动调控能力,能够为深入研究锁模动力学过程提供更加广阔的支撑平台。随后,研究了元素掺杂对Cd3As2薄膜中超快动力学过程的影响,通过对比铬(Cr)和锰(Mn)掺杂,试图厘清元素掺杂对Cd3As2载流子弛豫过程影响的一般规律。Cr和Mn均能实现不同程度的弛豫时间调控,但Mn掺杂会引入一个较长时间的弛豫过程(T:~2.8 ns@ Mn:12%)。根据以往SESAM的调控经验,这部分弛豫过程与可饱和吸收器件的非线性参数直接相关,对于调控超短脉冲输出以及优化锁模自启动性能具有重要作用。