论文部分内容阅读
本文利用解本征方程和迁移矩阵的方法研究了图厄.莫尔斯链(TMC)和广义菲波那契链(GFC)中的电子态。采用的模型哈密顿量有两种,一种仅考虑最近临相互作用,即n.n模型,另一种在最近临相互作用基础上还考虑了次近邻相互作用,即n.n.n模型。利用迁移矩阵方法,我们找到了一个判断体系某一能量本征值所对应的波函数是否为扩展态的方法。而且数值计算过程中,我们得到,在一维非周期和准周期链中既存在扩展态也存在局域态,这与利用各种解析方法得到的结果相一致。除此之外,我们还考虑了随机势对体系的影响。当给体系施加一个均匀分布的随机势时,原来体系中的扩展态将变成局域态,局域长度和随机度呈指数关系。而且,不同的非周期链准周期链,从扩展态到局域态随机度的临界值均为O,这与一般的一维体系的结果一致。