论文部分内容阅读
氮肥行业废水由于排放量大、成分复杂且C/N(COD/TN)比较低,因而难以高效处理。采用传统硝化反硝化工艺进行处理时不仅能耗高,而且需要添加大量有机碳源。自养脱氮工艺可在不消耗有机碳源的条件下进行脱氮,适合处理低C/N比的废水,是可持续污水处理技术的重要组成单元。因此,本文采用自养脱氮工艺处理氮肥废水,并结合厌氧消化工艺对氮肥废水中的有机物进行部分回收,从工艺的启动,氮肥废水中有毒物质的影响以及实际氮肥废水处理效果等方面展开了试验研究。首先对厌氧消化和自养脱氮工艺的启动策略及运行参数控制进行了研究。分别采用上流式厌氧污泥床(Up-flow anaerobic sludge blanket,UASB)、序批式厌氧反应器(Anaerobic sequencing batch reactor,AnSBR)和厌氧膜生物反应器(Anaerobic membrane bioreactor,AnMBR)三种反应器启动厌氧消化工艺。采用UASB反应器,在温度为25~30℃,pH为8.0~8.5,水力停留时间(Hydraulic retention time,HRT)为4.5 h,回流比为15的条件下,COD去除负荷达到2.44 kg COD/(m~3·d),产气量约为60.04 L/kg COD。采用AnSBR反应器,在温度为25~30℃,pH为8.0~8.5,HRT为16 h的条件下,实现了0.54 kg COD/(m~3·d)的去除负荷。采用AnMBR反应器,在25~30℃,pH为8.0~8.5,HRT为11 h的条件下,实现了0.36 kg COD/(m~3·d)的去除负荷。厌氧消化过程的主要产甲烷菌属为Methanothrix;分别采用滤柱和膜生物反应器(Membrane bioreactor,MBR)启动了厌氧氨氧化(Anaerobic ammonium oxidation process,ANAMMOX)和全程自养脱氮(Completely autotrophic nitrogen removal over nitrite,CANON)。ANAMMOX滤柱在温度为25~30℃,pH为7.8~8.2,HRT为11.5 h的条件下,总氮去除率和总氮去除负荷达到87.8%和0.8 kg N/(m~3·d)。CANON反应器则在曝气量为0.20~0.25 L/min,pH为7.6~8.0,HRT为7.5~8 h的条件下,实现了84.9%的总氮去除率和0.55 kg N/(m~3·d)的总氮去除负荷。自养脱氮过程中,好氧氨氧化菌(Aerobic ammonia-oxidizing bacteria,AerAOB)和厌氧氨氧化菌(Anaerobic ammonia-oxidizing bacteria,AnAOB)的代表性菌属分别为Nitrosomonas和Candidatus Kuenenia。考虑到氮肥废水中可能存在的重金属、硫化物和硫酸盐,以及氮肥废水输送过程中可能引入的纳米颗粒及抗生素等新兴污染物,对厌氧消化和自养脱氮工艺在上述有毒物质影响下的稳定性及影响机理进行了研究。1~50 mg/L的重金属离子对厌氧消化过程没有明显影响。200~1600 mg/L的硫酸盐对厌氧消化污泥的COD去除效果没有明显影响,但增加了厌氧消化过程的产气量,硫酸盐还原与厌氧消化的竞合关系促进了COD的去除,实现了废水中碳和硫的协同去除。硫化物对厌氧消化的短期和长期抑制阈值分别为5和50 mg/L,系统在50~100 mg/L硫化物的胁迫下虽然受到抑制,但表现出较好的自适应性,且硫化物对厌氧消化的抑制作用完全可逆的;对于自养脱氮系统,1mg/L的Zn(Ⅱ)和Cd(Ⅱ)对AnAOB活性产生抑制,但CANON系统表现出了较好的稳定性。500 mg/L的硫酸盐对CANON系统有轻微抑制,胞外聚合物(Extracellular polymeric substances,EPS)的分泌有助于维持微生物活性。5 mg/L的硫化物浓度可对CANON过程产生影响,50~100 mg/L的硫化物严重抑制CANON过程,但抑制作用可逆;CANON系统在硫化物的长期胁迫下诱导出硫自养反硝化,为氮、硫的协同去除提供了可能。1 mg/L的纳米颗粒对亚硝化有促进作用,但严重抑制ANAMMOX活性,抗生素与纳米颗粒的同时存在会对自养脱氮系统产生联合抑制作用;基于以上研究结果,UASB去除负荷更高,CANON工艺耐冲击性好,将UASB厌氧消化与CANON工艺串联,以实际氮肥废水逐步代替人工配水,经组合工艺处理后,出水COD浓度低至2.0 mg/L,出水氨氮浓度低于5.0 mg/L,出水总氮浓度低于10mg/L,优于《河南省合成氨工业水污染物排放标准》(DB 41/538-2017)中相关污染物的排放限值。在此过程中,反硝化菌得到诱导,与AerAOB和AnAOB的协同作用,完成了反应器内碳、氮的同步高效去除。相较于传统工艺,大大节省了物耗和能耗,并实现了部分能源的回收。