【摘 要】
:
随着设施农业的发展,无土栽培技术和水肥一体化技术的应用愈发普遍,但随之而来的营养液回收利用率低,废液排放引发的环境问题日益引人关注。通过检测营养液废液的离子浓度,经去除杂质和二次配制后的再利用,可有效提高营养液的循环利用率。本文设计了一套基于光谱信息融合的设施栽培营养液离子浓度检测设备,可以实现对设施栽培营养液中钙离子、镁离子、钾离子、铵根离子、硝酸根离子以及磷元素浓度的快速检测,进而为营养液浓度
【基金项目】
:
陕西省重点研发计划项目“温室环境精准调控技术与智能服务平台研发”(编号:2018TSCXL-NY-05-02);
论文部分内容阅读
随着设施农业的发展,无土栽培技术和水肥一体化技术的应用愈发普遍,但随之而来的营养液回收利用率低,废液排放引发的环境问题日益引人关注。通过检测营养液废液的离子浓度,经去除杂质和二次配制后的再利用,可有效提高营养液的循环利用率。本文设计了一套基于光谱信息融合的设施栽培营养液离子浓度检测设备,可以实现对设施栽培营养液中钙离子、镁离子、钾离子、铵根离子、硝酸根离子以及磷元素浓度的快速检测,进而为营养液浓度的动态调控和废液的循环利用提供可行的解决方案。本文的主要研究内容及取得的结论如下:(1)确定基于光谱信息融合的营养液离子浓度检测方法并提取特征波长。本设计依据水质检测相关国家标准和分光光度检测相关研究,通过紫外-可见分光光度计和近红外光谱仪,对经显色处理后的各离子标准溶液进行检测,获取吸光度数据,经光谱预处理后利用偏最小二乘回归算法绘制标准浓度曲线,使用竞争自适应加权算法和随机蛙跳算法提取出与各离子浓度相关性最大的特征波段,并结合可定制窄带LED光源的波段,确定了六个特征波段定制LED光源,其中心波长分别为220、275、400、540、700、1720 nm。(2)基于多组分顺序检测流路的检测设备结构设计和基于透射光谱检测的检测设备硬件设计。本设计搭建了一个基于低成本窄带LED光源和光电二极管结合的光谱信息采集平台,该平台在检测主流路的设计中借鉴了顺序注射分析法的流路原理,设计了基于多位排阀与微型精密蠕动泵的多离子顺序检测主流路系统,实现了多试剂和样品间的流路切换和精确进样、进试剂的功能。在该硬件平台的基础上,设计了营养液中待测离子经显色处理后通过光谱检测测定离子浓度的检测方法,即通过将光电传感器采集透射光产生的电压数据转化为吸光度值后,建立营养液中各离子浓度线性回归模型并将模型嵌入至树莓派处理器,实现营养液离子浓度的检测并实时显示检测结果。(3)基于C语言的检测设备控制部分软件设计和基于Python的检测设备人机交互界面开发。本设计根据嵌入式系统软件开发要求,完成营养液离子浓度检测系统软件开发,实现了STM32单片机对检测过程中营养液待测样本和显色试剂的精确输送,光谱数据的采集与计算。基于QT设计的用户交互界面,实现了检测过程可视化,检测结果实时显示,以及动态调控营养液浓度屏蔽。(4)营养液离子浓度模型建立及检测系统的测试与验证。本设计通过验证实验对整套设备的检测精度和稳定性进行测试。由于常见营养液配方离子种类基本一致,本文以通用霍格兰营养液为检测对象,对设备检测精度进行验证。试验制备了90个按不同比例稀释的无土栽培营养液通用霍格兰番茄配方样本,建立用于设备检测的营养液离子浓度线性回归模型,所建立的模型中磷元素、NH4+、NO3-、K+、Ca2+、Mg2+浓度的均方根误差为0.0646、0.0716、0.6896、3.5320、0.2773、0.3253,系统对样本溶液的检测结果平均误差率均小于±10%,且每份待测样本的单次检测时间约为15分钟。本设计研发的基于光谱信息融合的设施栽培营养液离子浓度检测设备具有成本低廉、检测准确率高和检测速度快的优点,在实际农业生产过程中,对提高营养液废液的循环利用,降低农业面源污染具有重要应用价值。
其他文献
陕北黄土高原是世界苹果的优生区之一,但该地区降雨量小且在苹果生育期中雨水分配不平衡,导致水分不能满足苹果树在生育期特定阶段的需求,最终影响果树的产量品质。本文以8年生寒富苹果树为研究对象,试验设3种滴灌方式;分别为分根交替滴灌(ADI)、单管滴灌(UDI)和双管滴灌(BDI),及3个灌水梯度;分别为高水(W1)、中水(W2)和低水(W3),本试验为正交试验设计,共有9处理,每个处理重复三次。研究滴
黄土高原地区是全球最大的苹果连片种植区,苹果种植已经成为当地经济发展的重要支柱产业,但该地区果园管理模式不科学,加之降水稀少,果树生长耗水强烈,导致当地旱作果园深层土壤水分亏缺严重,严重影响了果园的持续稳定发展。本研究在黄土高原地区依据降水梯度自南向北选取不同研究区域(扶风、长武、洛川、延安、子长、米脂),围绕研究区内苹果园水分生产力和土壤水分变化,在实地调查和定点检测的基础上,结合基于Windo
黄土高原地区种植的苹果品种大部分为富士系,富士系苹果对水分的需求较高。所以研究苹果果树的蒸腾对于苹果树生长发育和产量品质至关重要,目前测量果树的蒸腾的方法是茎流计测定法,但该方法设备较昂贵且会对果树树干造成伤害。因此,需要寻找一种新的方法研究富士苹果的蒸腾耗水,在不破坏树体的情况下还可以精确模拟苹果树的水分生理生态过程,为黄土高原地区苹果种植提供科学指导。本文以中国陕西延安市宝塔区庙沟村果园为试验
随着社会的发展,气敏传感器的应用范围越来越广,基于金属氧化物敏感材料的半导体气敏传感器存在选择性差、工作温度过高等缺陷,这严重限制了其实际应用,如何进一步提高气敏传感器的性能成为行业的研究热点。近些年,除稀土元素掺杂、贵金属修饰等改性方法外,通过不同材料复合构筑异质结构有望制备出低温或室温下高性能的敏感材料。二氧化锡和氧化锌是两种n型宽带隙半导体,一直是传感领域炙手可热的研究目标。SnS2是Ⅳ-Ⅵ
矿质元素是影响果树生长发育的重要因素。水肥一体化模式的不同会直接影响土壤矿质元素在时空上的分布,影响根系的生长分布,进而影响树体对矿质元素的吸收利用。因此,本研究于2018年10月–2020年10月在西北农林科技大学洛川苹果试验站开展苹果不同滴灌施肥技术参数试验和氮肥形态试验。其中,滴灌施肥技术参数试验选择毛管布置方式(一行一管和一行两管)、滴头间距(30和50 cm)、施肥周期(15和30 d)
非线性光学(NLO)在激光发明之后迅速发展,已成为光学领域的一个独立分支。非线性光学广泛应用于光通信、光计算、光信息处理、激光加工、激光医疗、激光印刷、激光制导、定向能武器等许多方面,目前还出现了一些引人注目的非线性光学领域:用于动态过程研究的超快光谱技术、强场激光物理及强非线性光学效应等。由于非线性光学的应用依赖于高性能的非线性光学材料,为了改变传统低效的“炒菜式”实验探索,以及加快新材料研发速
我国西北地区深居内陆,是水资源时空变率最高的地区,大部分地区年平均降水量低于400 mm。降雨主要集中在夏秋两季,且常年暴雨,与植被或农作物的生长发育需水期存在严重错位。因此,水资源不但无法满足工农业的发展需求,而且还对许多地方的人畜用水造成困难。而一些如集水池建筑材料一般是水泥,与土层相容性差,容易坍塌。水泥集水池不但水质不能保证,而且建造成本也高,存在推广困难。水泥集水池区域的土地不能复耕,生
力致发光(Mechanoluminescence,ML)是指材料在受到机械刺激(如拉伸、摩擦、撞击、刮划、挤压、超声等)时产生的发光现象。这种独特的发光现象使力致发光在防伪、绿色照明、生物成像、信息存储与加密、结构健康监测和智能电子皮肤等领域具有广阔的应用前景,受到了研究人员的广泛关注。然而,目前对力致发光的研究仍然存在一些问题,如高性能的力致发光材料仍然稀缺、发光强度较弱、发光颜色单一、发光的重
随着社会发展的进步,气体传感器和光电探测器在许多领域有很多应用,由于其具有体积小,费用低,工作环境范围广的优点,深受科研人员和技术人员关注。三氧化钼(MoO3)材料由于其独特的层状结构、与多价态相关的丰富物理化学性质、高的化学稳定性使其成为许多领域的研究热点,如场效应晶体管,电容器、催化剂,光电探测器,气体传感器,湿度传感器,电致变色和光致变色器件等。为了提高传感器性能并使其功能多元化,我们采用不
我国每年化肥施用量大,肥料利用效率低,造成土壤板结、土壤盐渍化,严重影响农作物产量品质。农业废弃物经厌氧消化获得的沼渣可以改善土壤环境,是优质的有机肥;而生物炭具有丰富的孔隙结构与和巨大的比表面积,与合适的肥料混合生产炭基缓释肥,能有效解决氮、磷、钾等养分流失的问题,提高作物对养分的吸收和利用效率。本研究将生物炭与牛粪沼渣混合制成炭基沼渣肥,与化肥、牛粪沼渣等进行比较,探究其对土壤理化特性、微生物