Structural application of medical image report based on Bi-CNN-LSTM-CRF

来源 :东华大学 | 被引量 : 0次 | 上传用户:q43372958
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Arabic(Arabic:(Ejzl),al-arabīyah,(czjc),arabīy)is a Semitic language which is the liturgical language of1.8billion speakers where all varieties of Arabic combined are spoken by perhaps as many as422million speakers(native and non-native).The largest differences between the classical/standard and the colloquial Arabic are the loss of morphological markings of grammatical case;changes in word order,an overall shift towards a more analytic morph syntax,the loss of the previous system of grammatical mood,along with the evolution of a new system;the loss of the inflected passive voice,except in a few relic varieties;restriction in the use of the dual number and(for most varieties)the loss of the feminine plural.
  Medical health services continue to be developed toward an intelligent direction,applying machine learning technology in the medical industry has become one of the hotspots research recently in the medical artificial intelligence area.As a great important part of the medical documents,the medical imaging reports record the summary of the radiologists towards the imaging findings,containing a large number of descriptions towards the lesions in the medical imaging.Extracting this important information from the Arabic text in the medical imaging reports and establishing the association between reports and imaging can better serve various clinical information systems such as clinical decision-making and clinical data mining besides reducing the professional physiciansworkload.
  However,most of the current medical imaging reports are stored in unstructured or semi-structured text form,which is difficult for computers to extract valuable information directly from these irregular text data,and it is hard for exploiting machine learning algorithm to further analyze and mining these data.Accordingly,it is of great challenge to automatically and efficiently extract the required information from medical imaging reports,forming structured data,and establishing the association between text descriptions and imaging features of lesions in the current intelligent medical service process.
  Taking into consideration the Arabic language characterizes and the lack of artificial intelligence techniques especially natural language processing for Arabic contents in the medical area,thus this thesis focus on extracting text feature tags of the Arabic contents in medical image reports by proposing the machine learning model Bi-directional CNN-LSTM-CRF and design mapping rules for structuralization as the Arabic language became day by day one the largest spoken language in the world.The main works of this paper are as follows:
  1.Analyzing the imaging reports and designing a structured report template.Combining the relevant research locally and globally with the guidance of professional physicians,this paper summarizes the content and structure of the mammography reports and designs a structured report template.
  2.Designing the text feature tags of imaging reports.There are characteristics of terminology and expression diversity in the clinical free language.This paper designs the unified Arabic text feature tags for the description of lesions in the imaging reports,as the input of the machine learning model.
  3.Exploiting the proposed machine learning models to extract the Arabic text feature tags,where all are based on the data provided by the top-three hospitals in Saudi Arabic,Riyadh.However,this paper iterative training the Bi-CNN-LSTM+CRF model,where it achieved and showed higher accuracy than Bi-RNN-LSTM+CRF model by approximately97%.
  4.Compare and integrate the Imaging Reports proposed models based on the frames and the differentiation of parameters.The models proposed in this paper are encapsulated the functional modules including machine learning models and structuralization mapping rules,and designs and implements an automated and scalable imaging reports structuralization system.
其他文献
【摘要】随着时代的进步,我国的课程标准在不断地完善,为了更好的落实课程目标,数学教材也在不断地进行修订完善。新课标对数学活动越来重视,教材中也设置“数学活动”栏目,在新课程改革的背景下,本文对新旧教材中“数学活动”栏目的活动内容作比较研究,希望能为广大教师提供参考以及为教材编写提供参考建议。  【关键词】新旧教材 数学活动 初中数学 教材比较  【中图分类号】G633.6 【文献标识码】A 【文章
期刊
【摘要】在我国新课改的大背景下,推进素质教育、促进学生的全面发展已经成为全体教师孜孜以求的工作目标。要想实现一手抓学习、一手抓素质的目标,就需要在有限的课堂时间里不断提高高中物理的课堂学习效率,提高学习质量。高中物理作为一门对学生物理思维和学习能力要求较高的课程,学生学习起来困难重重,笔者针对如何提高高中物理课堂的学习效率、提高学生学习成绩进行了探讨,希望能对读者带来有益的帮助。  【关键词】高中
期刊
【中图分类号】G623.23 【文献标识码】A 【文章编号】2095-3089(2016)10-0183-01  小学语文教学的根本目的是培养学生的阅读、写作能力。可见培养阅读能力是极其重要的。阅读教学中普遍存在着教师讲学生听,教师问学生答的现象。这样,不能从实质上提高学生的阅读能力,学生的词汇、说话、朗读、概括、思维能力都得不到真正的提高。那么,怎样培养小学生的阅读能力呢?下面谈谈我的几点浅见。
期刊
随着世界人口的急剧增加,城市化进程加快,人群集聚现象十分明显。人群高密度聚集不仅导致潜在的安全隐患,还阻碍了城市的发展。人群计数作为智能监控领域的一个方向,已经成为计算机视觉领域的研究热点。有效的人群计数对于视频安全监控,道路拥堵监测,城市规划布局等有着重要意义。
  近些年,随着深度学习的快速发展,卷积神经网络对不同领域的发展都有巨大的提升。这促使研究者们致力于使用卷积神经网络来提升人群计数系统的性能。由于存在人群背景噪音和人群尺度变化等因素影响,使得模型难以适应复杂的人群环境,实现良好的计数效果
【摘要】从“互联网+”旅游业的发展及其对人才需求现状出发,本文阐述了“互联网+”旅游人才层次、年龄、学历结构现状和人才培养中存在的问题,提出加强跨界合作,培养复合型人才的观点并论述了政府、学校、企业在“跨界”育人中的作用。  【关键词】“互联网+”人才现状 问题 跨界  【中图分类号】G71 【文献标识码】A 【文章编号】2095-3089(2016)10-0181-03  随着在线旅游日益普及化
期刊
随着人工智能技术在医疗信息化领域的应用,各种智能辅助诊断设备和系统不断涌现,给临床医生提供很大便利。重症监护病房(ICU)担负危重病人的临时救治工作,通常ICU的临床监护设备会对病人各主要器官的生理状态进行监控,其产生大量时间序列数据。ICU疾病表型诊断是通过采集病人在ICU住院期间的临床监测数据,在病人离开ICU时回溯性地给出病人当前罹患的疾病,临床上,通常医生基于监测数据,结合自身医学经验,同时参考量化的诊断图表给出疾病表型诊断结果,该项工作存在人工诊断困难且对单个病人医疗成本大的问题。ICU疾病表型
快递服务是用于将客户的货物从一个地理位置运输到另一个地理位置的外包媒介。随着电子商务在现代世界中包括加纳在内的国家的兴起,快递服务是关键的一环,不可或缺。在大多数加纳快递公司中,包裹的发送,交付和记录都是手动完成的。包裹相关的资料装订成册,但册子通常磨坏了或者丢失。大多数情况下,客户会亲自前往客车站,在没有任何正式文件的情况下将包裹通过客车寄给收件人。在收件人收到包裹前,他们也无法跟踪包裹。
  因此,本研究的主要目的是通过开发基于Web和Android的快递系统来管理和监视快递服务,从而减少加纳人
【摘要】2015年全国新课程高考文综卷(Ⅱ)历史试题,为长期从事中学历史教学的一线教师和一名从事高考研究的工作者,指引了基础教育中历史教学的方向  【关键词】2015年高考 试题特点 备考思路  【中图分类号】G633.51 【文献标识码】A 【文章编号】2095-3089(2016)10-0237-01  2015年全国高考已渐大幕落下,综观2015年全国新课程高考文综卷(Ⅱ)历史试题可知,试题
期刊
【中图分类号】G623.2 【文献标识码】A 【文章编号】2095-3089(2016)10-0238-01  薛宝钗和林黛玉可以说是《红楼梦》中两个及其重要的人物,薛宝钗抱拙守愚,贤淑谦厚,随分从时,端庄仪表中裹着封建卫道士的灵魂;林黛玉寄人篱下,仍不改其禀性,伶俐孤缴,光芒毕露,两种不同的性格造成了他们命运的悲剧。俞平伯曾说:“林黛玉直而薛宝钗曲,林黛玉刚而薛宝钗柔,林黛玉热而薛宝钗冷,林黛玉
期刊
卷积神经网络在计算机视觉领域的普及是验证深度学习的可行性的主要原因之一。计算机视觉的研究同样促进了手语识别算法的快速进步,并且促进了听觉和非听觉社区之间的互动。手语识别是通过签名进行交流利用重复的手势,肢体语言,面部表情和手部动作来传达含义,与自然语言相比,手势识别可以更有效地表达表达者的思想。虽然目前为止对手语手势分类和识别的研究已经开始多年,但是在利用图像处理和机器学习来识别加纳手语方面所做的努力较少。另外,对于手语学习者而言,传统的手语教学方法非常繁琐,不利于实践。在本文的研究工作中,提出了三种新颖