论文部分内容阅读
本博士论文由四部分组成,第一部分引入一些基本概念、介绍我们所研究的问题背景以及前人的研究工作;第二部分研究一类由组频率诱导的莫朗(Moran)集子集的分形维数;第三部分考虑一类Cantor函数不可微点的维数问题;第四部分具体给出一类非对称Cantor集在每一点的上下密度并给出证明.第二章我们研究了一类由组频率诱导的莫朗集子集的分形维数.一般情况下,为证明一给定集合的Hausdorff和Packing维数,需首先猜测其维数公式,这通常较为困难.但对这类由组频率诱导的特定子集,我们直接给出并证明其Hausdorff和Packing维数公式.结果表明,该类集合为正则集(即Hausdorff维数等于Packing维数),且其Hausdorff和Packing维数可套用公式计算而无需猜测.第三章我们研究了一类Cantor函数不可微点的维数问题.目前所知结果均要求对任意i,pi>a_i(Pi为一给定概率向量的第i分量,ai为产生Cantor集的迭代函数系统的第i个函数的压缩比).然而,若存在i,使得P_i<ai,已知文献中的办法将不再适用,这时猜测并证明该目标集的分形维数比较困难.我们在具体分析了Cantor函数不可微点的结构后,巧妙地联系起Olsen在文[43,45]中关于编码组频率发散点的结果,解决了该问题.第四章我们研究了一类非对称Cantor集在每一点的上下密度.丰德军、华苏和文志英等在[16]中给出一类对称Cantor集的具体上下密度.而对非对称Cantor集,已知参考文献未有结果.