基于速度感知的车辆驾驶模拟器视景系统的研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:w897156334
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着我国经济的迅速发展,汽车保有量也在不断上涨,但同时我国机动车交通事故的发生数也在逐年增加,机动车交通事故不仅造成了无数支离破碎的家庭,也给国家造成了巨大的经济损失,其中约90%的机动车交通事故归结到根本上都与驾驶员的错误有关。因此,在车辆研发的过程中,汽车性能的研究对象应该是把驾驶者和汽车作为一个整体,研究人员需要对“人—汽车—道路”这一闭环系统进行综合的研究。车辆驾驶模拟器作为一种能够准确模拟汽车的行驶过程,并给使用者提供视觉、听觉、触觉和运动信息的人机交互设备,被广泛地运用于车辆研发测试、人因工程研究和驾校培训的过程中,使用车辆驾驶模拟器进行实验具有良好的安全性、经济性和可重复性。驾驶员能否在驾驶模拟器中准确地感知到驾驶的速度决定着驾驶员操作的正确性和实验的结果的准确性,而驾驶员的速度感知主要受到驾驶模拟器视景系统的影响。本文以工程心理学中速度感知的相关理论为基础,对驾驶模拟器视景系统中摄像机视野范围、摄像机高度、道路护栏立柱间距对驾驶者速度感知的影响进行了理论分析和实验研究,主要做了以下工作:以工程心理学中光流率和边缘率的理论为基础,分析了视景系统中摄像机视野范围、摄像机高度和道路护栏立柱间距对驾驶者速度感知的影响;搭建了纵向单自由度的车辆动力学模型,基于经典欧拉法搭建了车辆速度模型,使用最小二乘法和插值法搭建了发动机模型,基于最大加速度原理搭建了变速器模型,为视景系统的搭建打下基础;在Unity3d引擎中,运用纹理贴图技术、预制技术等技术方法搭建了视景系统的静态场景、动态场景和特效场景,并完成了使用车辆动力学模型驱动视景系统中的场景的变化;设计并完成了三组实验,分别用于研究视景系统中摄像视野范围的变化、摄像机高度的变化和道路护栏立柱间距的变化对被试速度感知的影响并对实验结果进行了分析和讨论,实验结果表明:当目标速度为30 km/h时,被试的速度感知最准确,摄像机视野范围的大小、摄像机高度和道路护栏立柱的间距对被试的速度感知没有产生显著的影响;当目标车速为60 km/h时,被试的速度感知较为准确,摄像机高度的变化对被试的速度感知产生了显著的影响,摄像机视野范围的大小和道路护栏立柱的间距对被试的速度感知没有产生显著的影响。当目标车速为90 km/h时,被试的速度感知最差,摄像机视野范围的大小、摄像机高度和道路护栏立柱的间距都对被试的速度感知产生了显著的影响。本文对实验进行了生态效度的检验,检验结果表明本文的实验结果具有有效性,运用本文对驾驶模拟器视景系统的研究成果进行视景系统的设计,可以使驾驶人员在视景系统中感知到的速度更加准确,进而提升驾驶模拟器中的实验结果的准确性。
其他文献
全国各地突发水环境污染事件时有发生,水源地安全风险不容忽视,特别是翻船、上游排污、暴雨等偶发事件时,如何保障饮用水安全,是自来水行业面临的重大挑战。砂滤池是自来水厂消毒前的最后一道工序,对供水安全至关重要,在不具备增设专门的深度处理单元的情况下,将砂滤池改造为炭砂滤池,是一种既经济又适用的措施。按照这一技术路径开展了中试试验和工程应用探索。在700mm原砂滤层上加600mm、700mm、800mm
传统知识指的是世界各地土著和地方社区的知识、创新和做法。根据几个世纪以来积累的经验和适应当地文化和氛围的经验,传统知识代代相传。由于人类活动、不受限制的城市化、人口增长、生活水平提高、水资源日益激烈、污染日益严重、水资源在空间和时间上不规则分布,水资源压力大大增加。水是尼泊尔最大的自然资源,但是只有相对较低比例的总人口可以获得安全和清洁的日常用水。据估计,世界上只有约3%的水是可饮用的,而尼泊尔则
地磁匹配导航是实现水下航行器自主导航的重要导航方式。地磁场测量是地磁导航的基础,针对磁通门传感器中来自环境和载体的随机高幅值磁干扰,提出了一种基于多尺度干扰检测与完备集成经验模式分解相结合的降噪方法,提高地磁测量精度;在航行器组网通信的技术基础上,建立多航迹地磁匹配模型,设计多因素对地磁匹配定位影响实验,验证地磁匹配算法的有效性;针对初始定位误差较大,传统粒子初始化方法会出现粒子密度下降、算法收敛
砂土作为一种典型的颗粒材料,其宏观力学响应由细观特性所决定。为了更好的对砂土颗粒小应变弹性模量进行研究,需要进行宏细观多尺度观察。本文主要对砂土颗粒材料小应变下弹性模量进行研究,将离散单元法作为研究工具,对颗粒材料内部结构信息进行获取,通过均匀场假设及接触刚度矩阵构建,利用内部结构信息对颗粒材料系统弹性模量进行预测,通过与离散元输出结果进行比对分析,从宏细观多尺度对砂土颗粒材料弹性模量进行研究。主
汽车拖车组合系统(Car-trailer combinations,CTCs)是一类集成了乘用与旅行生活娱乐功能为一体的铰接式车辆。在行驶过程中,由于牵引车和拖车的动力学耦合,CTCs系统比家用轿车更容易达到动态临界车速而出现复杂的动力学失稳现象,即车身摆振,这为道路交通安全带来了巨大的隐患。在车辆系统动力学领域的研究中,本文首次系统性地针对CTCs系统参数对后向放大效应和转向系统参数对车身摆振的
汽车诞生至今仅百余年时间,但消耗的石油资源和造成的环境污染已经深刻地影响了人类社会发展进程,汽车电动化被广泛认为是解决交通排放和能源安全问题的重要手段。以轮毂电机为动力单元的分布式驱动电动汽车,凭借简化的底盘结构、快速的扭矩响应以及准确的控制执行优势,被誉为汽车底盘未来发展的“终极形态”。得益于轮毂电机的独立控制机制,转矩在四轮间的自由分配赋予了汽车性能优化“软调节”的发挥空间,如何更加有效地控制
船体变形是影响船载设备精度的一个重要因素,其测量精度对于构建船体统一姿态基准具有重要意义。基于惯性信息匹配的船体变形测量技术测量精度高,易于实现,并且可以实时动态的测量船体变形角,因而成为目前的一个热门课题。本文采用双光纤捷联惯性导航系统测量船体变形角,对基于惯性测量匹配法的船体变形测量技术进行了深入的研究,设计了基于Visual Studio 2017软件的船体变形测量软件系统,对四种惯性测量匹
智能网联汽车队列作为智能网联汽车的典型应用,能够提高交通通行效率,增强汽车的行车安全性,减少能量损耗。本文以智能网联电动汽车队列作为研究对象,建立了通用型车辆队列模型,分别提出了兼顾队列稳定性与能量效率的多车队列巡航控制策略,与基于分布式模型预测控制的队列经济性巡航控制器,并搭建了具有可扩展性以及通用性的微缩自动驾驶小车试验平台,进行了相关的车辆协同巡航控制实验。本文主要研究工作如下:首先,建立包
“智能化、网联化、电动化和共享化”是车辆行业的整体发展趋势,也是汽车制造厂商的研究热点。智能驾驶汽车的研究目标是取代人类驾驶员进行车辆自主驾驶工作,但是这是一个逐步递进的过程,与自动驾驶相比,半自动驾驶目前更有可能实现。在半自动驾驶过程中,人类驾驶员和自动控制系统共享对车辆的控制权,而面对相同的驾驶任务,不同驾驶特性的驾驶员将表现出不同的车辆操纵行为。此时,如何在自动控制系统中考虑驾驶员的差异驾驶
车架是跨接在汽车前后车桥上的框架式结构件,是汽车各总成及零部件的安装基体。纵梁作为车架的关键元件,其质量好坏直接影响汽车的承载能力。实际生产中,纵梁在加工成形后往往存在褶皱、拱形、翘曲等问题,导致直线度不符合标准,从而影响汽车零部件的装配和承载能力。为使纵梁的直线度满足指标要求,必须在其成形后进行直线度检测。目前工厂多采用人工拉线检测法,该检测方法效率低下且精度不高。基于上述现状,本课题以汽车纵梁