论文部分内容阅读
电磁净化作为一种新兴的净化技术,由于其具有的洁净、高效,以及对夹杂物的去除与密度差关系不大等特点,近年来已成为研究的热点之一。外加高频磁场的电磁净化方法更因为具有施加方便等特点而成为电磁净化领域的主要研究对象。本文从电磁场的基本原理出发,建立了高频磁场电磁净化计算模型,通过离散求和的方法对电磁净化时间、效率等进行计算,依靠此模型可以分析非金属夹杂物尺寸、细管直径、金属熔体表面磁感应强度等试验参数对电磁净化时间、效率的影响,并对最佳分离频率进行了计算。结果表明:金属熔体表面磁感应强度为0.06T时,对尺寸在10μm的非金属夹杂物在细管中进行电磁分离,20s后距离表面4mm处的非金属夹杂物在电磁积压力的作用下可以到达熔体表面,按照面积比计算,净化效率可以达到96%。而30μm的夹杂物在分离5.7s以后分离效率可以达到99%,100μm的夹杂物在0.56s左右分离效率即可达到99%以上。当f=1/(4πσμx~2)时在熔体内某位置处的电磁体积力取得最大值;在一定范围内,频率的增加将缩短电磁分离时间,而当频率值大于1/(4πσμx~2)时,电磁分离所需的时间将增加通过有限元计算及试验研究分析了磁感应强度的大小和施加时间长短对金属熔体流动的影响,结果表明磁感应强度越大,施加电磁场的时间越长,则细管内的金属熔体流动越剧烈;多管电磁分离的模拟结果表明,多管间的缝隙对内部的金属熔体内的磁感应强度有明显的影响,对多管电磁分离试验的结果表明利用多管进行电磁分离是可行的。通过试验研究了高频磁场电磁净化过程中非金属夹杂物尺寸、分离时间以及磁感应强度等对分离效果的影响。试验研究结果表明,对铝熔体中弥散分布的直径在5~15μm的氧化铝颗粒,依靠本试验条件很难对其实现分离,但对于铝熔体中的直径为30~200μm的氧化铝颗粒的试验研究结果表明,当金属熔体直径在10mm,施加表面磁感应强度为0.04T的磁场1s时,在熔体的边部就有明显的氧化铝颗粒偏聚层,分离时间大于3s时,在铝熔体内部已经很少有直径在30μm以上的氧化铝颗粒。当金属熔体表面磁感应强度在0.06T时,仅施加电磁场1s即可对氧化铝颗粒实现有效的电磁分离。通过试验获取了利用高频磁场分离Al-18wt%Si合金中初晶硅的最佳温度范围。试验结果表明,在600~620℃时施加0.04T的高频磁场5s,可以得到较好的分离效果。为了研究高频磁场电磁净化技术的实用性,本文采用泡沫陶瓷过滤器作为过滤器件,设计了泡沫陶瓷外加高频磁场的复合连续净化试验装置。利用该装置对Al-10wt%Mg合金的连续净化结果表明,外加高频磁场磁感应强度为0T时,经过两次过滤后将合金中的氧含量从0.0009%降低为0.0004%,净化效率为55.6%;当施加0.04T的高频磁场进行净化时,合金中的氧含量从0.0014%降低为0.0003%,净化效率达到78.6%,净化效率提高了23.6%。对含有30~200μm的氧化铝颗粒的铝熔体的净化结果表明,在泡沫陶瓷过滤器外施加0.04T的高频磁场时,对铝熔体中氧化铝颗粒的平均净化效率为96.9%;当施加0.06T的高频磁场时,平均净化效率为97.3%,后者比泡沫陶瓷单独净化的效率高了1.15%。本文同时针对流动状态对泡沫陶瓷过滤效率的影响进行了试验研究,结果表明紊流会明显降低泡沫陶瓷过滤器的净化效率。