论文部分内容阅读
虽然管道式消化道电子内窥镜在消化道疾病的检查中发挥了巨大的作用,但在小肠的检查过程中却体现出了它的局限性,现有的管道式电子内窥镜无法对小肠的全程进行观察。其它传统的检查手段因敏感性和准确性较低,也无法满足临床诊断的要求。无线内窥镜克服了管道式内窥镜的局限,微型摄像胶囊通过吞咽进入肠道,可以对食道、胃、小肠和大肠进行特定和非特定位置的图像拍摄,从而可以对整个消化道系统进行检测,克服了传统电子内窥镜只能检测胃部及部分肠道的缺陷。病人检查是无创、无痛苦的,符合国际生物医学工程所倡导的无创或微创的发展趋势。本文回顾了MEMS技术和消化道电子内窥镜的研究进展。MEMS技术的出现为消化道无线内窥镜摄像胶囊的微型化提供了一条很好的途径。无线内窥镜包括无线摄像胶囊、图像信号无线传输设备、影像浏览工作站三部分。本课题首先对系统的各个模块分别设计了多个方案,然后综合考虑各种因素,力求找到一个较佳的总体设计方案来实施。本项目主要的研究成果如下:(1)自行设计和研究出一种消化道无线内窥镜检查系统原理样机,在猪肠道中进行了模拟动物实验,拍摄到猪肠道内壁图片。(2)无线电摄像胶囊要求微型化和低能耗。在无法购到和定做到完全合乎技术要求图像传感器的情况下,选用了技术指标基本合乎要求的图像传感器OV7930N,但OV7930N也存在着尺寸过大和功耗过大的问题。对这两个问题的解决,一是通过激光切割取出图像传感器裸片,再通过MEMS技术加工,利用厚膜工艺实现了摄像电路模块的微型化。另外,本项目中摄像胶囊采用的是纽扣电池组供电,纽扣电池适宜在微电流情况下工作。在OV7930N内在功耗无法减小的情况下,对摄像胶囊采用了用了断续供电的工作方式,创造性地设计出一种能源管理电路:采用升压稳压模块lf1751-5作为电子开关,采用MSP430x11x1微处理器产生周期长达1分钟,脉宽为1秒的脉冲,来控制电子开关的通和断,从而控制整个摄像胶囊的供电。lf1751-5和MSP430x11x1都是微功耗的集成电路,整个能源管理电路的功耗不超过2mW。通过断续供电的工作方式,可以将摄像胶囊的工作时间从3分钟延长到6个多小时,基本满足临床需要。(3)根据项目的需要进行了光学透镜设计和照明电路设计,这两个模块对成像质量都有着直接的影响。(4)对模拟视频信号的无线传输采用了两种调制方式,一种是调幅方式,把图像传感器采集到的视频信号通过射频调幅的方式无线发送出去,体外有相应的调幅解调接收装置还原出视频信号;另一种是调频方式,方法和前面的类似,不过把调制方式换为调频。相较而言,调频方式传送的图像质量更好。两种方式设计的关键都是无线发射模块要微型化、微功耗。(5)研究了图