【摘 要】
:
烯烃是最基础的化工原料之一,烯烃的官能团化反应能够从简单的原料出发,引入不同的官能团,进而实现功能有机分子的构建。含氮杂环是一类重要的有机分子骨架,在天然产物、医药、农用化学品以及高分子材料等化合物中广泛存在。烯烃的胺化反应在含氮杂环化合物合成中具有重要利用价值,特别是烯烃的自由基胺化反应,为胺类化合物和含氮杂环化合物的合成提供了其他反应难以实现的高效的途径。近年来,可见光氧化还原催化用于烯烃的胺
论文部分内容阅读
烯烃是最基础的化工原料之一,烯烃的官能团化反应能够从简单的原料出发,引入不同的官能团,进而实现功能有机分子的构建。含氮杂环是一类重要的有机分子骨架,在天然产物、医药、农用化学品以及高分子材料等化合物中广泛存在。烯烃的胺化反应在含氮杂环化合物合成中具有重要利用价值,特别是烯烃的自由基胺化反应,为胺类化合物和含氮杂环化合物的合成提供了其他反应难以实现的高效的途径。近年来,可见光氧化还原催化用于烯烃的胺化反应取得了一系列重要的进展。可见光催化不仅使得一些热反应条件下难于实现的反应成为可能,也为氮自由基的产生提供了简单高效的方法,极大地拓展了自由基胺化反应在合成中的应用。本论文主要探讨了利用可见光催化的自由基胺化反应构建含氮杂环的策略,以脂肪胺、酰胺吡啶盐作为氮自由基前体,发展了合成吲哚酮、噁唑啉和四氢异喹啉酮的新方法。论文共分为以下四部分内容:第一章简单介绍了胺基正离子自由基和酰胺自由基的性质,对近年来有关它们参与的自由基胺化反应所取得的研究进展进行了归纳总结。第二章到第四章内容为论文研究工作,研究结果总结如下:(一)利用可见光催化策略,以丙烯酰胺为底物、简单易得的二级脂肪胺作为自由基前体、N-氯代丁二酰亚胺(NCS)作为氧化剂,发展了一锅两步构建胺基吲哚酮的新方法。二级脂肪胺首先与NCS反应原位转化为氯代胺,随后在可见光照下被激发态的Ru(bpy)3Cl2还原产生胺基正离子自由基,后者对丙烯酰胺进行分子间加成/环化反应生成胺基吲哚酮化合物。(二)合成了新的芳基、杂芳基以及烷基酰胺基-2,4,6-三甲基吡啶盐,以此为酰胺自由基前体,在可见光照和fac-Ir(ppy)3催化下,通过N-N键断裂产生酰胺自由基,酰胺自由基对丙烯酰胺发生串联加成环化反应,成功地构建了3位酰胺基取代的吲哚酮骨架。(三)以芳基酰胺吡啶盐作为酰胺自由基前体,探讨了可见光催化下酰胺自由基与烯烃的环化反应。不同取代的烯烃与芳基酰胺自由基反应生成不同类型的环化产物。当反应底物为芳基烯烃时,酰胺自由基对烯烃加成之后产生的碳自由基容易被氧化成碳正离子,进而发生[3+2]环化反应,生成噁唑啉类化合物;当反应底物为烷基取代的烯烃,加成之后产生的碳自由基更易进攻芳环,生成[4+2]环化产物四氢异喹啉酮。上述反应为噁唑啉和四氢异喹啉酮骨架的构建提供了新的方法。通过荧光淬灭、量子产率测定等实验方法和理论计算对反应机理做了详细的研究,阐明了影响反应选择性的构效关系。
其他文献
由于固着生长的特性,自然界中的大部分植物必须应对环境中的各种不利因素。机械力作为如膨压、重力、触碰、风、雨、损伤、虫食、空间障碍等环境因子的重要组成部分,对植物的生长发育十分重要。相应地,植物进化出了感知和响应机制以应对不同的机械力刺激。目前认为机械压敏离子通道蛋白在植物对机械力的感知过程中发挥重要功能。近十年以来,有关动物中机械压敏离子通道Piezo的研究取得了一系列突破性进展。Piezo作为机
背景:幽门螺杆菌(Helicobacter pylori,H.pylori)是人体最常见的病原微生物之一,其感染可导致胃炎、消化性溃疡和胃癌等多种胃肠疾病。研究表明,临床上至少75%的胃癌与H.pylori感染密切相关。因此,H.pylori已被世界卫生组织列为I类致癌因子。幽门螺杆菌感染过程中可分泌多种毒力因子,如,脲酶(urease,Ure)、细胞毒素相关基因A(cytotoxin-assoc
世界卫生组织的数据表明,到2030年,抑郁症将成为最常见的精神疾病,将会给个人、家庭和社会带来严重的负担。然而,由于世界范围内医患比例严重失衡,很多患者可能无法得到及时的诊断。目前,对抑郁症的诊断主要以量表和问卷调查为主,但这些方法存在主观性大、隐藏性高、专家依赖性强、误诊率高等因素的影响。近年来的研究发现,抑郁状态影响患者的面部表情表达和言语声学表达。因此,面部表情和语音已成为抑郁症识别的核心行
聚类是机器学习中一种重要的无监督学习方法,随着大数据技术的发展,聚类在很多领域得到了广泛的应用.密度峰值聚类(Density peaks clustering,DPC)由Rodriguez和Laio于2014年提出,是聚类分析领域近年来研究的热点算法之一.本文针对DPC算法从基于多核学习改进、半监督聚类扩展、在组合预测中的应用三个方面对其拓展,研究了如下三个问题:1)基于多核学习的密度峰值聚类算法
自我革命作为中国共产党鲜明的品格和显著的优势,对于政党治理现代化具有重要的促进作用。党的十八大以来,中国共产党通过自我革命,分别推动了党内治理现代化、党的执政现代化和巩固群众基础的现代化,进而在整体上推动了政党治理现代化。自我革命推动政党治理现代化的经验体现在主体维度上的牢牢坚持党中央集中统一领导、过程维度上的实现制度化规范化程序化、目标维度上的提升党的多重能力、时效维度上的坚持永远在路上。新时代
随着国民经济的日益发展,交通气象作为新兴的交叉学科应运而生,交通气象灾害,尤其是路面低温和道路结冰的研究,对于保证交通运输的持续稳定运行、发展国民经济有着十分重要的意义。本文对路面低温,低能见度,道路结冰三种主要交通气象灾害在全国范围的时空分布进行了分析,揭示了三种主要交通气象灾害的时空变化特征。由于低能见度灾害在天气模式中即可预报,而道路结冰的预报是在路面低温预报基础上的延伸。因此,本文围绕路面
严酷自然环境与有限物质条件等多重胁迫是许多哺乳动物不可避免和普遍面临的挑战。遭受逆境压力时,动物会通过自身遗传和/或非遗传的生理调节来维持机体内环境稳态。牦牛(Bos grunniens)作为一种全年放牧于青藏高原的大型哺乳动物,对高原逆境具有极强的适应能力,是研究哺乳动物极端环境适应机制的典型非模式动物。本实验室前期研究表明,胃肠道微生物可以通过调节营养物质代谢来协助宿主维系机体稳态。瘤胃作为反
肿瘤微环境(tumor microenvironment,TME)中多种内外因素如低氧、病毒感染、营养缺乏、低p H和原癌基因的激活都能导致肿瘤微环境中内质网应激反应(endoplasmic reticulum stress,ER stress)的发生。为了恢复内质网稳态,细胞能够启动非折叠蛋白反应(unfolded protein response,UPR),增加内质网伴侣分子的含量,目的是提高
Skyrmion的拓扑物理特性使其可作为信息比特的载体,从而成为了磁性信息技术和自旋电子学器件领域最有前途的候选者之一。基于此,研究skyrmion的产生、湮灭及其在外场中的响应等动力学行为,实现对其形态、数量的操控一直是人们关注的重点问题。本论文主要利用微磁学模拟方法,针对B20型手征磁体中skyrmion晶格态的拓扑湮灭、在脉冲磁场中的可恢复性、skyrmion阵列中局域skyrmion湮灭的
单线态裂分(singlet fission,SF)是通过一个自旋允许的多激子过程将一个高能的单线态激子转化为两个低能的三线态激子。通过此多激子过程可以使单节太阳能电池的理论效率突破Shockley-Queisser极限。但是目前基于SF的光伏器件并没有取得理想效果,主要是分子内单线态裂分产生的三线态对湮灭快,难解离,无法高效快速的产生自由的三线态;二是目前单线态裂分材料的多样性仍十分有限,现有的材