【摘 要】
:
新能源轨道交通(轻轨、地铁等)采用电力驱动系统,无尾气排放、绿色环保、高效节能,广受大众青睐。相比传统旋转电机,游标永磁直线电机推力密度大、无机械传动机构即可实现直线运动,故损耗低、电能转换效率高、响应及运行速度快,在新能源轨道交通牵引中有着巨大发展潜力。然而,由于缺少中间传动机构,干扰将直接作用于电机,使得控制系统对电机内部结构参数变化、负载扰动以及推力波动等更加敏感,影响其控制精度和稳定性。为
论文部分内容阅读
新能源轨道交通(轻轨、地铁等)采用电力驱动系统,无尾气排放、绿色环保、高效节能,广受大众青睐。相比传统旋转电机,游标永磁直线电机推力密度大、无机械传动机构即可实现直线运动,故损耗低、电能转换效率高、响应及运行速度快,在新能源轨道交通牵引中有着巨大发展潜力。然而,由于缺少中间传动机构,干扰将直接作用于电机,使得控制系统对电机内部结构参数变化、负载扰动以及推力波动等更加敏感,影响其控制精度和稳定性。为了抑制上述各种扰动对控制系统的干扰,本文通过改进控制算法和进行有效补偿,提升控制系统的抗扰动能力。具体从以下三个方面展开研究。首先,针对控制系统延时以及电机参数变化所导致的系统震荡和电流控制误差问题,提出一种考虑延时的电流预测控制算法,提高电流的响应速度和控制精度,并结合比例积分扰动观测器,将电机参数扰动所引起的电压扰动量进行在线补偿,进一步提升电流控制器的抗扰动性和鲁棒性。其次,本文提出一种基于扩展扰动观测器的改进滑模速度控制算法,通过幂次趋近律与指数趋近律的组合,降低了滑模高频“抖动”,提高了非线性系统的控制精度,同时结合扩展扰动观测器对负载扰动(包括推力波动、非线性摩擦力等)进行观测补偿,提高速度控制器的稳定性。最后,针对I/f控制结合滑模观测器的无位置传感器控制中,传统滑模观测器存在高频“抖动”以及切换时速度波动等问题,本文提出一种改进的二阶滑模观测器和切换方式的无位置控制算法,能有效抑制滑模高频“抖动”,提升系统鲁棒性。并采用dq轴的估算反电势结合正交锁相环获取电机位置信息,提高了位置估算的准确性和对高频噪声的抗干扰能力。在此基础上本文提出一种角度和速度线性变化权重结合滑模扰动观测器在线注入补偿电流的切换方式,避免了切换过流,降低了切换时推力和速度波动。
其他文献
目的:对羟基苯甲酸酯是一种环境内分泌干扰物,已有研究表明对羟基苯甲酸酯暴露可能与肥胖相关。然而,关于妊娠期对羟基苯甲酸酯暴露对孕期以及产后体重状况的影响却并不清楚。孕期和产后的体重状况又有可能会对母亲及其子代长期的健康状况产生不良影响。本研究的目的是评估孕早、中、晚期尿液的对羟基苯甲酸酯浓度与孕期增重以及母亲产后体重滞留之间的关系。方法:本研究基于一项前瞻性产前队列研究,在2014年至2015年间
随着人们生活水平的提高和计算机网络系统的迅速发展,大量与互联网应用相关产品不断出现,特别是手持智能电子终端产品(手机)、车载信息显示系统以及其应用软件已经渗透到人们的日常生活中的每一个角落,使得驾驶员在开车时使用手机的现象频繁发生,造成驾驶员视觉信息通道过载,不能专心驾驶。研究表明,近几年,在所有的交通事故中,因驾驶员分神导致事故率的比重大幅增加。开展驾驶员分神研究,对于监控和规范驾驶员行为,提高
随着科技的不断进步,汽车的转向系统已从传统的机械式转向系统发展到以液压助力式、电控液压助力式与电动助力转向系统为代表的助力式转向系统,而如今较为流行的汽车电动助力转向EPS系统以其驾驶舒适、结构紧凑、节约能源、保护环境等优势成为了成为当下汽车转向系统的研究热点。本文选取某配备EPS系统的微型车作为研究对象,主要研究了匹配不同助力特性曲线的EPS系统对汽车操纵性能的影响。首先在查阅大量相关文献的基础
锂硫电池在理论上具有高能量密度和低成本的优势,是目前最具研究价值及应用前景的新一代电化学储能体系之一。然而单质硫的低电导率,充放电过程中的大幅度体积变化,中间产物溶解扩散造成的“穿梭效应”等问题,严重制约了锂硫电池的应用前景。氮化钒(Vanadium Nitride,VN)具有优异的导电性,用作载硫基底材料能够显著改善电极的导电性,并能有效抑制多硫化锂的穿梭。在本论文的研究中,将过渡金属掺杂至VN
目前,在跨单元调度中,普遍采用运输策略来决定车辆行驶路径,然而这些运输策略限制了车辆一次只能运输一个异常件或者车辆只能运输其所属单元内的异常件,造成车辆利用率不高,车辆在单元间的运输次数增加,导致总成本增加。为了提高车辆利用率,并在保证生产效率的同时,有效降低总成本,本文拟在具有不同车辆数量的单元制造系统中,对跨单元调度优化的同时,对车辆路径也进行优化,允许车辆一次运输多个异常件,且车辆由各单元共
超级电容器作为一种新型储能设备一直备受人们关注。目前广泛使用的有机系超级电容器虽然拥有高达2 V以上的电位窗口,但是因为有机电解液易燃易挥发等缺点导致有机系超级电容在实际应用中存在很多限制。水系超级电容器安全又廉价,且电解液的离子电导率高,功率密度大,具有广阔的应用空间。但是水的热力学分解电势只有1.23 V,导致水系超级电容器的工作电压低,常在1.0 V左右。因此如何提高水系超级电容器的工作电压
平行铸造车间主计划排产是集团式多车间铸造企业在模糊生产环境下,完成生产工艺相同而生产效益不同的平行铸造车间最优订单排产决策的过程。现有人工主计划排产方式排产效率低下,排产结果缺乏科学性与合理性,容易造成订单拖期严重、企业生产效率低下、车间生产负载不均衡等问题。为此,本文研究了基于改进多目标粒子群算法的平行铸造车间主计划排产建模及求解方法,并通过多个规模的仿真实验验证了所提出的多目标优化算法辅助排产
随着经济、可持续的新能源取代传统化石燃料的需求日益增长,锂资源的消耗不断增加,开发可替代锂离子电池(LIBs)的电化学储能技术引起了人们的广泛关注。其中,与锂离子电池具有相似存储机制的钠离子电池(SIBs),由于具有丰富的资源储量和低廉的成本,被认为是最有希望的下一代电化学储能技术。电极材料作为电池的关键部分很大程度上决定了电池的性能。因此,设计和构建合适的、稳定的、高性能的电极材料对推动钠离子电
汽车板簧是汽车悬架系统中最传统的弹性元件,由于它具有经济性、生产工艺简单、可靠性和结构优化空间大等优点,而被广泛应用于交通运输工具中。随着汽车工业的高速发展,对高强度汽车板簧钢的需求量也逐年增加。本文以一种新型高强度汽车板簧钢为研究对象,旨在通过对其加工工艺和组织性能等方面开展研究,为工业试生产工艺的制定提供理论指导。本文主要内容及结果如下:(1)对弹簧钢的连续冷却转变规律和淬透性进行了研究。利用
三维自支撑材料由于其导电传质能力强,机械柔性佳以及制备工艺简单等优点被广泛地应用于储能与转换器件(如锂离子电池和锌空气电池等)。但是该材料在高电流密度下容易产生结构性转变,从而造成能量密度与功率密度大幅度下降等问题。因此,开发在高电流密度下也能保持结构稳定的三维自支撑电极是一项挑战。本文设计了一种新颖的多层同轴纳米管阵列结构,改善了三维自支撑电极在高电流密度下的储能特性和循环稳定性。此外,通过调控