【摘 要】
:
近年来,人们饮食不规律和生活作息紊乱等现象使肝脏承担着巨大的压力,因此肝脏出现问题的病患也越来越多。在手术规划系统中,肝脏CT图像的分割,尤其是肝脏血管的精确分割是实施肝脏分段和手术模拟的重要基础。但是由于肝脏血管结构复杂、个体差异大、血管区域对比度低等原因,精确的对肝脏血管进行分割操作的难度很大。随着大数据时代的来临以及计算机技术的发展,深度学习方法在图像分割方面显示出强大的优越性和智能性。但是
论文部分内容阅读
近年来,人们饮食不规律和生活作息紊乱等现象使肝脏承担着巨大的压力,因此肝脏出现问题的病患也越来越多。在手术规划系统中,肝脏CT图像的分割,尤其是肝脏血管的精确分割是实施肝脏分段和手术模拟的重要基础。但是由于肝脏血管结构复杂、个体差异大、血管区域对比度低等原因,精确的对肝脏血管进行分割操作的难度很大。随着大数据时代的来临以及计算机技术的发展,深度学习方法在图像分割方面显示出强大的优越性和智能性。但是针对肝脏血管分割任务,依然存在着很多难点:1)血管末端存在很多细小的血管分支,这部分血管的分割结果较差;2)在腹部CT图像中,血管与非血管区域存在正负样本不平衡问题。在肝脏静脉系统中,肝静脉和门静脉存在体素不平衡的问题。3)血管具有连续性,在相邻的CT切片图像中存在重要的上下文信息,但普通2D的方法无法获取这些上下文信息。为了解决这些难点问题,本文做了如下的针对性研究:1)为了提升肝脏小尺度血管的分割精度,建立了一种以2D编码器-解码器网络结构为基础,加入了注意力机制、多尺度特征融合、深层监督等模块的分割模型。同时为了提升模型的测试结果,还使用了3D形态封闭操作和体积分析法对结果进行后处理。2)为了解决腹部CT图像中正负样本失衡的问题,采用了由粗到细的两阶段分割方法。粗分割主要进行血管定位,找到包围框,细分割则以包围框内的图像作为输入,进一步的对血管进行分割。为了使粗分割的定位更准确,在测试过程中,还使用了Fixed-Point方法。同时为了应对肝静脉与门静脉体素不平衡的挑战,设计了一种加权指数对数损失函数。3)为了更好的补充相邻CT切片图像间的上下文信息,使用三通道采样以及多角度特征融合策略。同时因为3D的模型可以有效地提取上下文信息,所以以2D模型为基础,进行了3D升级,并验证了分割效果。最终本文方法在肝静脉、门静脉和静脉系统上进行了一系列对比实验,结果表明本文两种模型的准确性、泛化性、稳定性和鲁棒性均好于FCN、Deeplabv3+、U-Net和3D U-Net等其他方法,说明了本文方法在肝脏血管分割方面具有一定的有效性和优越性。
其他文献
过渡金属催化不饱和分子活化是一种高效并且原子经济的合成方法,由于其在合成天然产物、药物、具有生物活性骨架的化合物等领域具有非常重要的作用,一直以来受到有机化学家们的广泛研究。铑催化剂因其具有反应活性高、底物适用范围广、选择性好以及官能团兼容性好等优点常被用于不饱和分子的活化。不饱和分子种类繁多,并且其高效高选择性的官能化反应仍是有机合成化学中的研究重点。通常要实现不饱和分子的活化或者官能化需要进行
随着对新能源电动汽车、小家电和便携式电子设备的需求增大,社会对快速转换和储存电化学能量的可充电电池的要求也越来越高。锂硫电池是以锂金属为负极,硫为正极的新型二次电池,在未来有望替代已触及其能量密度天花板的锂离子电池成为下一代能源存储系统。与基于锂离子嵌入/脱嵌原理的锂离子电池不同,锂硫电池在充放电过程中会经历多个反应中间体,其中长链多硫化锂(Lithium Polysulfides,Li PSs,
超材料,具有奇异材料特性的人造复合结构,在进入21世纪以来,已经成为涉及物理学,材料科学,工程学和化学的科学新领域。基于叠层金属-介质层-金属(Metal-Insulator-Metal)的MIM超材料吸收器作为一种典型的超材料表现形式,由于其具有体积小、结构灵活、制备简单、灵敏度高和无标记等优点,不仅被应用于光源及探测器的研究,而且在气体、化学、生物物质的传感检测中也展示出了极高的应用价值。本论
近年来,随着各国二氧化碳大量排放,温室气体猛增,对生态系统形成了一定的威胁,因此各国越来越重视环境保护。在2021年两会中,“碳中和”和“碳达峰”首次被写入政府工作报告,证明我国下定决心要解决碳排放中存在问题。传统的硅酸盐水泥混凝土行业具有高排放和高能耗的特点,在节能减排的进程中面临了巨大的挑战,因此探索研究低碳的新型胶凝材料成为了众多解决方式之一。基于此,本文主要探究以碳酸钙与铝酸盐矿物为主要原
葡萄糖是维持哺乳动物生命活动的基本营养物质之一,持续浓度高出正常水平的葡萄糖将会导致糖尿病。这是一种常见的慢性疾病,严重危害了人类健康,因此对于人体内葡萄糖浓度的定量检测具有十分重要的意义。而目前大多数市售葡萄糖检测仪是基于酶的传感器,但酶传感器具有繁琐的酶固定过程、价格昂贵、保质期短等缺点,所以越来越多的非酶葡萄糖传感器被开发应用。本论文利用过渡金属的高催化性能结合碳材料的导电性和高比表面积,制
随着信息时代的到来,工业技术迅速发展,电子产品的种类和数量急速增加,相关电子信息设备产生的电磁波充斥在人们日常生活的每个角落。空间中可监测到的电磁能量也在以每年7%以上的速率迅速增长。过量的电磁辐射会给人们正常的生产生活带来不利影响。电磁屏蔽则是解决过量的电磁辐射的有效手段,发展和研究出新的高性能电磁屏蔽材料已成为各国的研究重点。镁合金是现今继钢铁和铝合金之后应用广泛的第三大金属材料,具有较轻的重
声音事件检测旨在识别输入音频信号中所包含的目标声音事件并确定事件出现的起止时间。声音事件检测在人们对真实环境的感知和交互方面发挥着重要作用,在智能监控,自动驾驶和医疗保健等领域有着巨大的应用价值。随着深度学习技术的发展,基于深度神经网络的声音事件检测取得了显著的效果提升。数据驱动的深度神经网络依赖大量的训练数据,而现有声音事件检测数据集的规模较小,这制约了深度神经网络在声音事件检测中的发展。声音事
情感识别作为人机交互(Human-Computer Interaction,HCI)系统的核心组成单元,在智能驾驶系统、远程教学系统、智能家居系统、健康检测系统、旅行推荐系统以及智能机器人系统中具有重要的应用价值。人类一般通过语音和表情图像表达情感,因此,开展语音图像多模态信息融合的情感识别方法研究,提高多模态情感识别的识别率,具有重要的理论意义和实用价值。本文以情感识别模型作为研究对象,分析语音
电子鼻系统是传感器技术和人工智能技术的共同产物,它是模拟生物嗅觉的一种仿生技术。通过模式识别算法与具有交叉敏感性、广谱性的气敏传感器阵列相结合,实现对气味的识别与分类。电子鼻技术在实际的发展过程中仍然有诸多尚待解决的问题,例如传感器灵敏度不高、选择性差、重复性差、易中毒、易老化等问题。对于这些问题,目前比较普遍的解决方法是采用信号处理技术对电子鼻系统进行校准,但现有的电子鼻校准方法并没有一个通用的
核能源是一种高效的清洁能源,发展和使用核能源是新时代能源主题之一。与之而来的核安全问题越来越受到社会各界的关注。作为核主要材料之一的Zr合金,在高温高压水蒸气等恶劣环境下容易破坏失效,沉积Cr涂层是目前最有潜力的一种提高Zr基材抗高温氧化性能的方式。目前研究制备的Cr涂层较厚及Cr晶体粗大,损害了热中子经济及增加了缺陷,制备等轴致密的Cr涂层成为目前的研究重点。多层膜结构是一种有效提高涂层结构和性