【摘 要】
:
银纳米团簇因具有独特的荧光性能、优异的生物相容性及良好的水溶性而受到广泛关注。而多螯合点聚合物模板可以将银纳米团簇稳定在聚合物链间,防止其发生聚集进而控制其尺寸,提高其溶液稳定性;同时模板在很大程度上也决定了银纳米团簇的光学特性。本文以新型多螯合点聚合物为模板,可控制备了具有较高发光效率的荧光银纳米团簇,同时研究了该团簇在光学检测以及生物成像等领域的应用。结合了稳态荧光光谱、时间分辨荧光(TCSP
论文部分内容阅读
银纳米团簇因具有独特的荧光性能、优异的生物相容性及良好的水溶性而受到广泛关注。而多螯合点聚合物模板可以将银纳米团簇稳定在聚合物链间,防止其发生聚集进而控制其尺寸,提高其溶液稳定性;同时模板在很大程度上也决定了银纳米团簇的光学特性。本文以新型多螯合点聚合物为模板,可控制备了具有较高发光效率的荧光银纳米团簇,同时研究了该团簇在光学检测以及生物成像等领域的应用。结合了稳态荧光光谱、时间分辨荧光(TCSPC)、紫外-可见吸收光谱等表征手段,对团簇特性进行了深入的研究。主要研究内容如下:(1)以N-异丙基丙烯酰胺(NIPAM)和丙烯酸(AA)为单体,通过共聚反应生成聚(N-异丙基丙烯酰胺-co-丙烯酸)(P(NIPAM-co-AA)),并以此共聚产物作为配体制备了具有温度/p H双敏特性的银纳米团簇。该银纳米团簇的荧光强度在15至65°C温度范围内表现出良好的线性与可逆响应,且分辨率高达0.45°C,这使其可应用于荧光纳米温度检测领域。与此同时,该银纳米团簇还表现出p H敏感的荧光特性,其线性响应的PH值范围为4.95至11.02。此外,两个特定波长处的荧光激发比率(I Ex=305nm/I Ex=453nm)在5.94-11.02的PH范围内表现出良好的线性响应,通过该比率可以定量检测p H变化。该团簇良好的温度/p H双敏特性使其有望成为用于多响应性传感和比率型荧光探测等领域的理想工具。(2)选取了衣康酸(IA)和丙烯酸(AA)为单体共聚生成多螯合点的共聚物聚(衣康酸-co-丙烯酸)(P(IA-co-AA)),并通过光还原制成了银纳米团簇P(IA-co-AA)-Ag NCs。该团簇在很宽的p H变化范围内均能够稳定存在,且于酸性条件下可在450 nm处检测到蓝光发射,在弱酸性、中性至碱性条件下可在600-850nm处检测到橙红光发射。此外,该团簇在第二近红外区间(1050 nm)呈现很强的光致发光现象。当改变溶剂中水和乙醇的比例,可发现团簇还表现出溶剂诱导的聚集诱导发光(Aggregation-induced emission,AIE)效应。且当乙醇溶剂体积分数达90%时,该团簇的荧光强度与纯水溶剂中相比可以增加八倍之多。发现团簇在近红外二区也具有这种AIE效应。中性条件下分散在90%乙醇溶剂中的团簇具有超长的荧光寿命,表明此时该团簇的光致发光实际上属于磷光。最后,将团簇成功地用于细胞成像,团簇表现出低毒性、良好的组织渗透性、较高的发光效率,是用于生物成像的理想材料。
其他文献
二氧化碳(CO2)是一种丰富、无毒的C1资源,将CO2作为化学原料合成各种工业增值品是绿色化学中实现CO2转化的重要途径。多相催化剂由于容易循环回收且对环境不会造成污染,因此被广泛应用于CO2的固定与转化。有序介孔酚醛树脂材料因其高比表面积、可调节的孔道结构以及较大孔径等特点成为多相催化剂载体选择之一。本论文围绕氮掺杂功能化有序介孔酚醛树脂材料的制备及其催化相关CO2反应的性能研究开展工作,研究具
石墨烯具有高导电率、高透光性和化学稳定性等优异性能,是透明导电领域中最有潜力取代氧化铟锡(ITO)的材料之一。近年来随着光电器件对于透明导电薄膜需求的增大,如何避免转移等复杂工序,直接在绝缘基底上制备良好光电性能的石墨烯薄膜成为了人们研究的热点。为此,本文利用铜纳米颗粒作为催化剂,基于化学气相沉积法直接在绝缘基底上制备石墨烯透明导电薄膜。进一步研究铜纳米颗粒的分布对石墨烯制备的影响,探究石墨烯生长
随着全球变暖、冰川融化、沙尘暴等环境问题的出现,人们越来越重视环境问题。为了美好的生活生存环境,我们需要珍惜地球村,力所能及地保护环境,才能更好更久地发展。二氧化碳(CO2)浓度过高会导致温室效应,如何合理利用CO2是科学家们一直关注的问题。如果将CO2通过化学反应转化成其他有价值的物质,这样既能够缓解环境问题,也能够获得其他有利用价值的分子。在CO2催化转化过程中,有机碱发挥着关键作用。其中,具
有机荧光分子不仅可以作为荧光染料用于油墨等精细化工领域,还可以应用于化学传感、荧光探针、有机场效应晶体管和生物成像等新兴领域。通过共价有机合成方法制备的荧光功能分子稳定性好,但通常存在合成路线长、收率低等缺点。而基于非共价相互作用的超分子自组装的方法往往能以几乎定量的收率制备得到目标荧光功能分子,但是,与共价有机合成方法制备的荧光功能分子相比较,通过非共价相互作用自组装得到的荧光功能分子的稳定性相
大气风场与人们的生活息息相关,准确测量大气风场的变化,对于机场风切变探测、气象预报、风能利用以及航天制导等领域都有着不可估量的作用。相干激光测风雷达因为其晴朗天气下探测能力突出、高时间分辨率与高空间分辨率、高测量精度等优势成为了测量大气风场的主流手段。由于相干测风激光雷达的回波信号非常微弱,信号处理方法的好坏对于测风雷达的性能有决定性的影响。本文就相干激光测风雷达信号处理过程中的多普勒频移频率校正
本文研究的是一类耦合的非线性项带导数的薛定谔方程在周期边界条件下解的长时间稳定性问题,其中(V1,V2)∈Θm[Θm参考(2.6)式]。本文的主要结论是:对于几乎所有的(V1,V2)∈Θm,如果上面方程的初值在指标为s的索伯列夫范数下小于ε(0<ε≤1),那么相应的解满足其中B为给定的正数。为了证明上面的结论,首先利用傅里叶变换把上面方程转化为无穷维的哈密顿系统,由于偏微分方程的非线性项带有导数,
交通运输业、民用工业领域及制造业的飞速发展对润滑油的性质提出了更为严苛的要求,同时低碳发展的战略让“CO2零排放”的生物质平台分子的高效转化燃料和高价值化学品成为了研究亮点。利用廉价的生物质资源绿色合成生物质基润滑油基础油和柴油,是颇具竞争力的研究路线。本论文的主要研究内容包括:(1)受梳型PAO长支链烷烃结构的启发,我们开发了一种以油脂衍生的脂肪酸甲酯(FAME)为原料制备T型结构全碳链的低粘度
哈伯(Haber-Bosch)法合成氨是由氢气和氮气在高温高压和催化剂存在下生产NH3的工业过程,被认为是20世纪最重要的发明之一,为世界人口增长做出了巨大贡献。现有的Haber-Bosch合成氨工业是一个高能耗过程,每年约消耗全球能源供应总量的1%~2%。开发温和条件下的合成氨过程是研究人员长期以来不懈追求的目标,而这一目标的实现高度依赖于低温高活性的新型催化剂的开发。理想的催化剂一方面应该具有
C4=催化裂解生成C3=是低值烃高值化利用的重要途径。高选择性生成烯烃类产物,尤其是目标产物C3=,同时减少非烯烃类副产物的产生,是C4=催化裂解技术发展的重要方向,其核心在于高效催化剂的研制。本论文发展了失活钛硅分子筛TS-1作为催化剂高效催化C4=裂解制C3=的方法,探索了裂解活性中心并对其酸性质加以调控,进一步引入载体,发展成为了一种新型高效的C4=裂解催化剂。研究内容主要分为以下三方面:1