论文部分内容阅读
随着计算、传感和无线通信技术的发展,无线网络化控制系统克服了传统网络化控制系统中安装及维护成本高、拓展性差等局限性,成为了网络化工程应用中的发展潮流。由于被控对象的结构规模不断扩大,无线网络化控制系统中的各个网络器件(如传感器、控制器、执行器)根据预先设计的协作式协议借助无线通信网络相互交换数据信息,才能高效地完成对被控对象的泛在感知与协同控制的任务。这种协同控制协议使得物理过程、信息处理与通信相互融合,从而提高了网络化控制系统的控制性能、效率及可靠性。无线通信网络的采用,增加了无线网络化控制系统的控制方式灵活性;但无线通信网络的开放性影响数据信息的准确性,另一方面大量的无线通信业务容易使得有限的无线通信网络资源耗尽。无线通信网络的开放性和有限的通信信道资源,成为了影响无线网络化控制系统工作性能的主要因素。因此,如何设计网络化控制系统的协同算法成为无线网络化控制系统的关键问题。本文以无线网络化控制系统的协同算法为研究对象,分别从网络器件特性、通信网络拓扑等方面分别考虑无线网络化控制系统中传感器、控制器和执行器的协同控制问题。本文的主要研究工作有以下几个方面:一、针对具有非线性约束的控制器,研究了网络化控制系统的分布式协同控制问题。针对控制器中的非线性约束,利用Lyapunov稳定性理论及Lurie系统绝对稳定性理论,将非线性控制器的分布式协同控制问题转化为关于闭环系统稳定性的凸优化问题。理论分析证明,通过提出的分布式协同控制算法可以镇定网络化控制系统。二、针对信息物理融合系统中的协同控制问题,提出了线性控制器的分布式采样控制算法。根据物理过程系统中固定不变的耦合关系,利用控制网络中信息通信的灵活性通过考虑控制器通信网络拓扑的入/出度特性适当的设计分布式采样控制算法。该分布式采样控制算法能根据控制网络中资源的分布合理地设计控制算法,充分利用网络中的控制资源。三、针对数据入侵攻击下无线传感器网络提出了基于事件触发机制的有限时间一致性滤波算法。通过引入事件触发机制和具有数据丢包的数据入侵攻击模型,给出了有限时间一致性滤波算法。理论分析证明,通过所提出的有限时间一致性滤波算法无线传感器网络系统能在有限时间内达到一致性,同时消耗较小的网络通信资源。四、针对基于中继节点的传感器/执行器网络系统研究了分布式协同控制算法。借助代数图论把异构性网络中的控制问题转化为同构系统中的闭环稳定性问题。利用代数图论与Lyapunov稳定性理论,给出了基于中继节点的传感器/执行器网络的分布式协同控制算法。理论分析证明,新提出的协同控制算法可以保证基于中继节点的传感器/执行器网络系统的稳定性。五、针对异构多智能体系统提出了基于事件触发机制的一致性控制算法,以减少数据传输对网络通信资源的占用。分别针对两种不同的网络结构考虑了异构多智能体系统的一致性问题:1)在固定不变的网络拓扑中,借助于事件触发时刻的邻居数据信息和开环估计与实际状态的差值,提出了基于事件触发机制的分布式一致性控制算法。2)对于时变切换的网络拓扑,借助依赖网络拓扑的驻留时间设计了基于事件触发机制的分布式一致性控制算法。由于采用了基于估计的触发条件,所设计的一致性控制算法能有效延长事件触发的释放时间,减少事件触发次数。六、针对控制器的不确定性以及执行器的故障率,提出了一种混合触发机制下的非脆弱性控制算法,这种混合触发机制是由时间驱动机制下周期采样和基于事件触发机制组成。在这种混合触发机制下,利用Lyapunov-Krasovoskii泛函和输入延迟法给出了非脆弱性控制算法。仿真结果表明:所提出的非脆弱性控制算法能根据不同条件下的触发机制、执行器故障率保证网络化控制系统的稳定。