【摘 要】
:
近年来,世界范围内都呈现化石能源短缺和电力需求持续增长的趋势,全球气候变暖现象也日益显著,大力发展可再生能源发电技术一方面为改善这一现象提供了解决思路,另一方面也给电力系统安全稳定运行带来了巨大的挑战,甚至导致全球范围内大停电事故频发。尽管如此,停电事故发生后,制定合理有序的电力系统恢复应急响应预案能够明显降低因停电事故带来的直接经济损失和社会影响。由于电力系统自身的复杂性,制定电力系统恢复策略本
论文部分内容阅读
近年来,世界范围内都呈现化石能源短缺和电力需求持续增长的趋势,全球气候变暖现象也日益显著,大力发展可再生能源发电技术一方面为改善这一现象提供了解决思路,另一方面也给电力系统安全稳定运行带来了巨大的挑战,甚至导致全球范围内大停电事故频发。尽管如此,停电事故发生后,制定合理有序的电力系统恢复应急响应预案能够明显降低因停电事故带来的直接经济损失和社会影响。由于电力系统自身的复杂性,制定电力系统恢复策略本身就存在一定难度,此外,可再生能源机组参与电力系统恢复,既可以作为黑启动电源,又可以辅助加快电力系统恢复速度,但其出力的不确定性会增加电力系统恢复过程中系统运行的风险。基于上述问题,本文开展了考虑可再生能源接入的电力系统协同恢复优化策略研究工作:(1)介绍机组在黑启动阶段的恢复特性,重点分析机组启动功率曲线和机组出力特性曲线,并提出基于Big-M法的线性化方法。充分考虑系统恢复过程中关键恢复路径对机组启动次序的影响,提出计及关键恢复路径的机组启动次序优化策略,以最大化系统总有功容量为目标函数,综合考虑机组临界启动时间,机组启动功率以及输电线路恢复状态与机组启动相关变量的逻辑关系等约束,建立混合整数线性规划模型,采用商业求解器获得最优机组启动次序,实现机组启动次序和关键恢复路径恢复协同优化。(2)采用非参数核密度估计法分别获取风电机组和光伏电源的出力特性曲线,由于风光互补系统中风电机组和光伏电源出力的互补性,引入Frank-Copula函数,进而获取风光互补系统联合出力特性曲线。考虑风光互补系统接入时机对机组启动次序的影响,提出计及风光互补系统的机组启动次序确定性优化模型。由于风光互补系统出力具有不确定性,进而构建基于置信间隙决策理论的机组启动次序鲁棒优化策略,并通过场景法处理模型中的概率约束,采用商业求解器获得机组启动次序鲁棒最优解,验证了可再生能源机组对加快系统恢复速度的积极作用。(3)针对单时步负荷恢复优化问题,提出了含风储联合系统的负荷恢复双层优化策略。上层模型以最大化当前时步可恢复负荷量为目标函数,建立混合整数线性规划模型,求解获得当前时步最优负荷点和输电线路恢复方案,并将其传递给下层模型;下层模型以最小化当前时步负荷恢复持续时间为目标函数,建立非线性模型,求解获得当前时步最短负荷恢复持续时间,并将其传递给上层模型,上下层模型迭代求解,获取当前时步最短负荷恢复持续时间的最优负荷恢复方案。通过求解双层优化模型,可得到当前时步风储联合系统调度出力,为了减少风储联合系统实际出力与调度出力之间的误差,进而提出储能系统的实时调度模型。通过不断更新电力系统运行状态且迭代求解所提出的单时步负荷恢复模型,即可得到完整的负荷恢复策略。本文提出的考虑可再生能源接入的电力系统协同恢复优化策略一方面为探究电力系统协同恢复优化、恢复过程中冷负荷特性建模等问题提供了理论依据,另一方面,为解决可再生能源机组如何参与电力系统恢复过程这一问题提供了研究思路。
其他文献
近几十年来,由于能源危机和环境污染等问题,作为清洁能源的风能开始得到广泛应用,电力系统中风能的渗透率逐渐提高。然而,受到气候和地理环境等因素的影响,风电出力具有间歇性和波动性等特点,影响电能质量。此外,风电的急剧变化增加了电力系统调度的难度,可能会导致严重的安全稳定性问题。储能具有快速响应、可靠性高、充放电灵活等优点,能够平滑风电场出力的波动,提升风电的可控性,有助于提升电力系统运行的稳定性与经济
铝合金作为一种轻质合金材料,由于其具有导热性能高、耐腐蚀性强、吸收冲击力强、比重低等优点,在汽车轻量化的发展中,已成为了替代传统钢铁的首选材料。然而铝合金由于强度、硬度与耐磨性仍与钢铁有一定的差距,对于一些需要在高强度、高耐磨环境下服役的汽车零部件,目前依然只能采用钢铁作为其主要材料。所以研究开发一种Al/Fe双金属材料,将钢铁与铝合金的优异性能结合起来,在保证材料安全性能的同时,有效提升汽车零部
随着科学技术的不断进步,轻质化、柔性化的智能结构在不同领域得到广泛应用,由于柔性化结构自身阻尼低、刚度小,当受到外界扰动时极易产生低频振动且振动衰减缓慢,对航空航天等高精度运行场景产生不利影响。振动会引起结构疲劳损伤,缩短使用寿命,如何解决柔性结构的振动问题引起了广大学者的高度重视。主动控制对柔性结构的低频振动有较好的控制效果,对于变化的外界扰动具有很好的灵活性和适应性,但是影响振动主动控制效果的
近年来,随着电力电子技术的快速发展,三电平变流器在电能变换中有着广泛的应用。本文针对中点钳位型三电平变流器,分析了多种调制策略,旨在研究中点电压平衡、开关损耗和共模电压等方面的问题,实现多目标混合调制。首先,本文介绍了三电平变流器的发展历程及应用,以及典型的电路拓扑和调制策略,引出了三电平变流器需解决的问题。针对本文研究的中点钳位型三电平变流器,从主电路拓扑、运行原理和数学模型三个方面具体分析了其
随着能源短缺和环境污染的问题日益严重,各国开始积极探索清洁高效的可再生能源,风力发电成为解决以上问题的有效方法之一。目前风电渗透率的不断提高,经济落后、交通不便地区用电需求的逐年增长,都使得风力发电系统在微网下得到了越来越多的应用。但随之而来电力电子装置本身低惯量低阻尼的特性给电力系统安全稳定运行带来的威胁,以及风机组网运行时功率分配的问题都亟待解决。本文采用虚拟同步发电机控制策略以提供系统惯量支
我国陆上风电场大量分布于自然环境条件复杂的山区,运行经验表明,山区风电场集电线路雷击跳闸已成为造成山区风电场电量损失的首要因素,威胁电网安全运行稳定性。准确掌握复杂地形因素影响下集电线路雷击风险水平可为集电线路雷电防护改造提供技术支撑,因此亟需开展山区风电场集电线路雷击风险精细化评估及防护技术研究。本文建立了考虑三维地形因素影响的山区风电场集电线路绕击跳闸计算模型,开展了逐杆逐塔的精细化雷击风险评
现代城市轨道交通的飞速发展迫切需要高性能铜基受电弓滑板材料。受电弓滑板位于列车顶端或底部,与导线直接接触,是车载电力系统从牵引供电系统获取动力的重要元件,列车运行中不断受到来自接触导线的冲击,这对受电弓滑板材料性能要求极为严格。传统粉末冶金法制备的铜基受电弓滑板材料由于存在诸多问题使其应用受限,经压制后坯料仍会残留不少孔隙,烧结中坯体不可避免出现体积膨胀,严重降低材料服役性能。为制备粉末热锻全致密
沥青混合料被广泛用于城市道路和高速公路的建设,在车辆和环境的共同影响下,沥青路面会产生各种病害,影响了行车速度的同时也产生了安全隐患。当车辆在经过路口处和弯道处时,由于速度的改变,会对沥青路面产生剪应力,当其超过了沥青路面的剪切强度时,会产生永久变形。沥青-集料界面处相对薄弱,由于集料的形状不规则和性能的差异,界面的局部区域易出现应力集中,所以一般内部损伤和裂纹萌生于界面处。本文首先制作出试验所需
多电飞机驱动系统采用电力系统部分取代原有的液压、气压和机械系统,与传统飞机驱动系统相比,多电飞机减少了对碳氢燃料的依赖性,降低了碳排放量。多电飞机的驱动系统是由不同类型的作动器组合成的非相似余度作动系统,系统复杂度和元器件数目增加,故障发生的概率也会随着提高。因此,从提高系统的可靠性和安全性方面来说,对多电飞机非相似余度作动系统进行故障诊断和预测具有重要的研究意义。本文针对多电飞机非相似余度作动系
随着电力电子技术的不断发展,研究具有高效、高功率密度的变换器成为了一种发展趋势。本文所研究的单级高频链DC/AC变换器,采用高频变压器传输能量,不仅可以解决传统工频变换器体积大,成本高的问题,同时可以实现能量的双向流动及主电路开关管的ZVS通断,提高系统的转换效率。论文主要工作包括以下几个方面:(1)介绍了高频链变换器的研究背景、意义及国内外现状,对高频链变换器的电路结构进行了分类总结,讨论了单级