论文部分内容阅读
随着我国高速铁路的建设速度越来越快,铁路运营安全成为了国民人身及财产安全的重要出行保障,为了让高铁具有安全、平稳的运行环境,需要严格地控制其线下工程的形变,特别是在最容易发生沉降变形的路基段。单一预测方法虽然其在建筑物、大坝、边坡和基坑等工程上的预测效果和预测能力较好,但对于沉降量控制在15mm的高速铁路路基就显得捉襟见肘。因此,本文通过对高铁路基的沉降机理以及相关预测模型的预测机理进行研究,对单一预测模型进行初始值、残差以及背景值等方面的优化来提高其预测精度,提出利用小波优化的灰色GM-BP神经网络模型,依托兰新高铁和中兰高铁的沉降监测项目,对模型的预测数据进行了深入分析和研究,得到了较理想的结果。考虑到在模型的精度评价方面通常只通过相对误差和后验差的评价方式,过于单一,无法全面评价模型的预测效果,本文使用贴近度、误差平方和、标准差及平均绝对误差和平均绝对百分比误差等多种评价方式取权值共同评价,大大提高了模型评价的准确性。本文主要工作有:(1)通过对高速铁路路基结构的研究,确定在高速铁路路基方面可能会发生的路基沉降病害,分析研究了影响高速铁路路基沉降的各类因素及针对各类情况提出相应的观测方案和技术依据。(2)利用灰色系统对路基沉降数据进行预测,通过灰色GM(1,1)和灰色Verhulst预测模型的对比试验,确定采用灰色GM(1,1)模型作为灰色组合模型的灰色模型,对初始值、残差和非等间隔序列等进行改进,预测结果精度得到一定的提高。(3)利用MATLAB小波工具箱对小波函数和阈值进行选择,运用小波软阈值方法对路基沉降数据进行去噪,期望对未来得到的预测结果更加准确。利用遗传原理对BP神经网络算法进行部分改进,进一步提高的BP神经网络学习效率低、收敛速度慢等问题,并应用于变形预测方面,取得了初步的成绩。(4)对组合方式进行研究,最终确定采用GM-BP串联方式进行路基沉降组合预测,建立小波优化的灰色GM-BP神经网络预测模型,依托工程实例,借助MATLAB软件对路基沉降数据进行预测,分别得到灰色GM(1,1)、BP神经网络、小波优化的GM(1,1)及小波优化的灰色GM-BP神经网络四种模型的预测值,将其均与实测值进行对比,结果表明,小波优化的灰色GM-BP神经网络预测模型的预测效果优于其他单一预测模型,在高速铁路的路基沉降预测方面更可靠、精度更高、适用性更强。