论文部分内容阅读
航空发动机叶片的叶形面质量对于发动机整机性能具有重要影响,复杂的叶片叶型设计满足了对叶片的空气动力学要求的不断提升,也给叶片加工制造带来了很大困难。专用的叶片数控磨削机床的使用提高了叶片加工的效率和精度,但由于叶片种类繁多,且大多数处于不断改进和变化,专用叶片数控磨床尚很难适应所有的叶片磨削加工。关节型机器人用于航空发动机叶片的加工,已引起领域内的重视,鉴于应用机器人进行叶片表面磨削,具有一定的技术优势,因此,具有很好的发展前景。本文面向航空发动机叶片制造技术发展需求,开展航空发动机叶片机器人精密磨削加工相关理论和关键技术研究,主要研究内容和成果如下。(1)基于表面粗糙度模型理论描述发动机叶片的表面质量、表面的微观形貌特征,通过数值模拟的方法,对某型叶片的平面叶栅进行流场分析,设置不同的叶片与气流交界面的壁面函数,获得若干组计算结果,与光滑表面的叶片流场模拟值进行比较,得到兼顾叶片性能和经济效益的表面粗糙度值。根据叶片成型的原理和叶片积叠面的几何特点,对叶片的加工误差进行研究,分析这些误差存在的形式和所处位置,指出加工方法的不足成为误差来源的可能性。选取某航空发动机第二级压气机基元级的平面叶栅作为研究对象,通过数值计算的方法,定量分析了各种误差所造成的负面影响。(2)研究基于机器人对叶片进行分区域磨削加工的技术方法,利用机器人执行端拟合叶片的复杂表面,以完成叶片毛坯的磨削。使用样条曲线拟合叶片毛坯的轮廓曲线,并根据叶片截面轮廓曲率判断被加工区域的属性,以此划分加工区域。研究机器人夹持磨削工具或夹持叶片工件的工作模式,针对不同特点的叶片和不同的加工需求,提出了四种基于机器人的叶片表面磨削方案及其机器人的布置方案。对基于机器人的叶片表面磨削加工的空间曲面拟合、路径规划技术进行了实验验证。(3)从宏观尺度和微观尺度两方面对叶片表面磨削中的接触形态和接触力展开研究。在宏观方面,提出基于接触理论的叶片表面与磨削工具的接触模型;在微观方面,选取带有铣削纹理的叶片表面微元和粘附有磨粒颗粒群的磨削工具微元进行研究,从理论上建立了相关数学模型,且使用数值模拟方法对接触力进行了仿真分析。研究磨粒群颗粒的行为特点,用剪胀理论阐述磨削过程中磨粒群的受力和变形、逃逸失效等行为,建立了磨粒颗粒的接触力传递模型,并进行了仿真分析。建立了砂带机接触轮与叶片表面接触力的测量装置,基于机器人夹持小型砂带机、变位器夹持叶片工作模式进行了叶片磨削实验。(4)针对长时间加工叶片的磨削工具,研究其磨粒对材料去除能力的衰减因素,以保证叶片表面质量的一致性。依据磨粒的磨损程度确定磨削工具的寿命,将磨粒的磨损进程分为三个阶段,分别对三个阶段的磨粒磨削能力进行了数值模拟分析,将仿真获得的数值代入参数模型,计算出模型所预测的参数,通过实验获取实测参数值,并与仿真值进行对比,评估参数模型的稳定性和准确度。