含故障滚动轴承-转子系统的非线性动力学分析

被引量 : 0次 | 上传用户:callingme
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在旋转机械的相关研究中,滚动轴承—转子系统动力学已经成为转子动力学一个重要的研究方向,对其振动特性的分析和研究在系统相关元件的优化设计和减少不良运动状态等方面有着重要意义。滚动轴承作为旋转机械的重要支撑部件,对其运动状态的监测是保障机械设备平稳运行的关键环节。利用滚动轴承的振动响应进行系统故障诊断,是检查轴承运行状态和预测剩余使用寿命的主要指标,在降低维修成本、保证系统运行安全和提高设备利用率等方面发挥了重要作用。本文以六自由度滚动轴承—转子系统为研究对象,通过对不同参数下的系统进行动力学仿真,根据
其他文献
随着运输业和物流行业在国内外的快速发展,市场对货物分拣效率和准确度的要求愈来愈高。现如今人们需求量大,货物流动性不断提高,分拣货品工作量大大增加,工作日渐艰巨。如果物流系统出现停滞、岔道处卡住或者分拣出错等故障,那么技术人员需要排查众多的故障点,从而导致停机周期较长,严重影响了系统的分拣效率,因此需要对物流分拣系统进行分析和进一步优化,提高分拣线系统的智能性。针对物流分拣线系统能够连续、快速识别货
学位
学位
碰撞振动系统广泛应用于航天航空、机械设备、轨道交通等各种生产实践领域中。间隙的存在使得系统零部件在外部激振力作用下频繁接触,导致系统速度在碰撞前后发生跃变,在一定的参数条件下表现出丰富而复杂的动力学行为(分岔和混沌)。有效控制该类系统的混沌行为,对于消除混沌运动给系统运行性能带来的负面影响具有重要的理论意义和工程应用价值。本文针对单自由度碰撞振动系统混沌控制问题,将群体智能优化算法与OGY混沌控制
学位
移动机械设备由于摩擦磨损每年造成大量的能量耗散和材料损失导致全球巨大的经济和环境负担。开发先进的航空航天、汽车、军事和各种工业应用润滑系统已成为全球紧迫的任务。一般用润滑油来改善这种情况,但在边界润滑条件下润滑油承载能力和抗磨性能不足,基础润滑油添加剂是成为近几年快速发展的研究领域。类金刚石碳基(DLC)薄膜具有优异的力学和摩擦学性能,有望在各种工程领域中得到理想的应用。然而,DLC薄膜的摩檫学性
学位
模切机又被称为裁切机,是印刷、包装、零部件成型加工等方面的主要工业设备。本课题针对模切机中的链传动系统进行研究,主要通过对模切机结构特点、传动原理和和传动链滚子、链轮的啮合过程的分析,使用广义拉格朗日方程法对其进行动力学模型的建立,并在MATLAB软件中采用四阶Runge-Kutta法对动力学微分方程加以求解,对其动力学特性作了分析。论文主要研究内容概括如下:首先,对模切机中的链传动系统的结构、原
学位
轴承对于现如今的绝大部分机械设备而言都是至关重要的存在,轴承质量的好坏将直接影响到机械部件的使用寿命与操作安全。然而,在轴承生产过程中,不当的操作方式、生产流程甚至由于工人工作经验、工作状态等因素将导致轴承零部件存在缺陷,例如轴承保持架装配缺珠,轴承钢球、外圈缺陷会出现麻点、擦伤、磕碰等缺陷。虽然在轴承生产过程中都存在质量检验环节,但当今大多数轴承厂仍采用人工检验,即肉眼检测的方式,这种方式一般是
学位
超磁致伸缩材料(Giant Magnetostrietive Material,GMM)作为一种高效的电—磁—机转换的智能材料。与其他传统的智能材料相比,GMM具有磁机转换率高、饱和磁致伸缩系数大、响应时间短、频响特性高以及输出力大等优点。因此,在传感器、换能器、航空航天、智能制造、振动主动控制等领域有着巨大的市场,并吸引了很多科学家、科研机构以及各国大学的研究。因此,基于GMM设计的作动器(Gi
学位
齿轮传动系统作为最重要及常用的一种传动部件,不同工况下,齿轮副在啮合时受到周期性变化的接触应力作用,当该接触应力超过轮齿材料的接触疲劳强度时,会在齿轮副轮齿表面或次表层上形成形状各异的点蚀坑,并由初期点蚀迅速演化为扩展性点蚀,而点蚀的出现、扩展会导致齿面金属材料的遗失,改变齿轮副的几何尺寸及非线性动力学参数,导致系统的动力学特性发生变化,从而影响系统的稳定性、可靠性和疲劳寿命,同时产生大量噪声。因
学位
分段光滑是机械系统非线性的主要形式之一,解的多重性是非线性系统的重要特征,关于分段光滑振动系统多重解的研究对机械系统参数优化设计、服役性能和故障检测等方面具有实际工程意义。近年来,关于分段光滑振动系统动力学特性的研究以其中部分解为主,大量研究仅仅关注最靠近某个初始条件附近的一个或者两个稳态解,极少能够做到更进一步的研究。分段光滑系统难以被精确解析分析是其中原因之一,在定性分析过程中过度依赖解析解进
学位
伴随工业4.0以及“中国制造2025”等战略背景,国内某机车厂因为业务种类和规模的拓展,使得打造信息化、智能化、自动化的智能制造车间成为该厂发展的必然趋势。而在打造智能制造车间的环节中,智能物流是其中的一个重要环节,在其中的物料输送和柔性制造系统中,叉车AGV因为其可以避免传统物流运输效率低等弊端的特点成为智能物流的关键。在对叉车的运动控制研究过程中,如何提高其运动过程中导航循迹的精度,是保证AG
学位