论文部分内容阅读
本论文以动力系统方法为研究工具,以源于实际物理问题的非线性浅水波方程为研究对象,研究了这些非线性数学物理方程的分支问题与精确解,揭示了这些非线性模型蕴涵的丰富的动力学性质.本论文共分七章.第一章是绪论,我们综述了非线性浅水波方程的发展历史、研究现状、主要研究方法以及取得的结果,介绍了李继彬教授提出的研究奇非线性波方程的动力系统方法—“三步法”.第二章我们用动力系统方法研究了 Dullin-Gottwald-Holm方程的精确解及其动力学行为.在不同的参数条件下,我们讨论了所有行波解的分类并给出其精确解的显式参数表达式.为了比较奇异行波系统和相应正则系统解的动力学行为,我们也给出了正则系统的精确解的显式参数表达式.其次,我们以Dullin-Gottwald-Holm方程为例,详细介绍了非线性系统行波解的相关概念,纠正近十年中我们观察到的一些错误.通过第二章的研究我们知道,周期尖波解和伪孤立尖波解是“两尺度”的光滑经典解,他们在峰值点处是局部光滑的.第三章我们用动力系统方法研究了中度振幅浅水方程的行波解及其动力学行为.通过分析行波系统在不同参数条件下的相图,获得了光滑孤立波解、周期波解和周期尖波解的显式参数表达式.同时,我们还证明了破缺波解的存在性.第四章基于动力系统方法,我们研究Burgers-αβ方程的有界行波解的存在性和动力学行为.我们可以把Burgers-αβ方程看作是一个非线性浅水波动力学模型.首先通过变换化简Burgers-αβ方程.再利用动力系统的方法,我们得到了不同参数条件下相应的行波系统的相图分支.对应于一些特殊的水平曲线,得出Burgers-αβ方程在不同参数条件下所有可能存在的精确解,如:周期波解、孤立尖波解、周期尖波解、孤立波解和破缺波解,从而了解系统相应的流体力学性质.第五章我们研究了 Biswas-Milovic方程.令F(|q|2)= α|q|4+β|q|2 通过行波变换,我们得到了 Biswas-Milovic方程的行波系统.利用动力系统方法,我们获得了 Biswas-Milovic方程的行波系统在不同参数条件下的相图分支.对应于一些特殊的曲线,我们求出了精确解的显式参数表达式.这些解有光滑孤立波解、孤立尖波解、扭波解、反扭波解、周期波解、周期尖波解和破缺波解.第六章我们用动力系统方法研究了两类非线性波方程.这两类非线性波方程对应的行波系统是著名的Lienard系统.首先,我们介绍了 Chiellini可积条件,并且求出了 Lienard系统在Chiellini可积条件下的首次积分.然后,我们讨论了广义阻尼sine-Gordon方程和单边势相互作用下的Burgers方程的动力学行为以及行波系统的精确解.同时,对于单边势相互作用下的Burgers方程,我们还讨论了它的全局单调扭波解和非单调扭波解的存在性.在一些特殊的参数条件下,我们还求出了单调扭波解和非单调扭波解的显式参数表达式.最后一章我们对本文的研究结果进行了总结,并提出需要进一步研究的问题.