论文部分内容阅读
随着微电子器件的尺寸日益逼近物理极限,电互连带来的延时以及功耗问题制约着集成电路的发展。因此,人们利用光子代替电子作为信息载体,完成信息的高效传输,也就是光互连。将一些光子学器件集成到微电子电路芯片上,有助于实现硅基光电子集成。在硅衬底上直接外延生长Ⅲ-Ⅴ族材料是实现硅基光源的最有前景的方法之一。同时,量子点结构可以有效减少材料生长过程中出现的高密度穿透位错,并大幅提高激光器的工作寿命,已成为硅基光电子集成的首选方案之一。此外,在波长为1.31μm和1.55 μm的通信波段,激光器的损耗较低,有利于硅基光电芯片的制备。对于L31μm波段的硅基激光器,前人已做了十分充分的研究,但在1.55μm波段的硅基量子点激光器上仍存在着很大的研究空间。与1.31μm波段相比,硅基光电芯片在1.55μm波段中具有更低的损耗,适用于中/长距离通信中的低损耗传输,并且可以与其他器件兼容以实现大规模硅基片上集成。另外,方形微腔激光器中的模式光场均匀地分布在腔内,对侧壁粗糙度的依赖性较小,适合与其他器件耦合。近些年来对于1.55μm波段方形微腔激光器的研究工作多集中在InP衬底上。但InP晶片尺寸小、脆性大,并且价格昂贵,难以应用于大规模光电集成系统中。因此,对1.55 μm波段硅基Ⅲ-Ⅴ族方形微腔量子点激光器的研究是十分有必要的。基于以上背景,我们开展了对1.55μm波段硅基InAs/InGaAs量子点方形微腔激光器及其集成结构的设计和优化研究,主要的成果如下:(1)对带输出波导结构的硅基InAs/InGaAs方形微腔量子点激光器结构进行设计与优化。通过在方形微腔激光器的一边中点处连接输出波导,实现了激光器的定向单模输出。同时,我们设计了一种新的硅基激光器材料结构使激射波长扩展至1.55 μm波段。此结构是在硅衬底上直接外延生长InGaAs成核层,不需要生长InP过渡层就可以制备1.55 μm波段硅基激光器,降低了工艺复杂度,有利于硅基光电集成。另外,我们对方形微腔激光器的结构参数和光学模式特性进行了分析,详细研究了微腔边长、输出波导宽度、包层厚度和刻蚀深度对方形微腔品质因子的影响。结果表明,当方形微腔激光器的边长为16μm,波导宽度为1.0μm,包层厚度为1.7μm,刻蚀深度为3.95μm时,方形微腔激光器能够在1546.70nm波长处实现品质因子高达3051.64的单模激射。(2)提出了一种基于切角方形微腔激光器与双锥型波导的片上集成结构。将切角方形微腔激光器与锥形Ⅲ-Ⅴ族波导连接,锥形Ⅲ-Ⅴ族波导进一步与锥形硅波导垂直耦合,实现切角方形微腔激光器的定向输出。此结构可以通过选区生长工艺在SOI(Silicon-on-Insular)衬底上进行材料的制备。结果表明,当方形微腔激光器的切角宽度为3.5μm,锥形Ⅲ-Ⅴ族波导的长度为20μm,锥形硅波导的锥尖宽度和高度分别为0.2 μm和0.7 μm时,激光器能在1564.71 nm波长处实现激射,对应的品质因子为1621.05。切角方形微腔激光器与锥形Ⅲ-Ⅴ族波导之间的光耦合效率为53.5%。