超冷原子体系中的拓扑节点链

来源 :山西大学 | 被引量 : 0次 | 上传用户:cool_1944
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着1960年世界上第一台激光器的研制成功,被称为“最快的刀”、“最准的尺”、“最亮的光”的激光开始了它在科研及社会生活各领域内的应用,大大推进了科技的发展和社会的进步。通过将它应用于微观世界,人们也能更加精确地认识宏观世界的本质与奥妙。20世纪末,朱棣文等人因为在超冷原子领域的开创性研究而获得了诺贝尔物理学奖,自此,超冷原子系统作为一个人为可控平台开始活跃在物理学的诸多前沿研究中,光与原子的相互作用也在各行各业得到了非常广泛的应用。特别是最近提出的新型光学拉曼晶格方案可用于设计各种类型的高维自旋轨道耦合,并且表现出高可控性,所实现的自旋轨道耦合量子气体具有长寿命的特点。随着这些研究进展,构建高维自旋轨道耦合已发展成为一个非常重要的研究方向。自2016年诺贝尔物理学奖授予从事研究物质拓扑相变和拓扑相理论的科学家开始,拓扑就在物理领域掀起了一股浪潮,一系列新奇的拓扑现象和拓扑物态被科研人员所发现。由于自然固体材料内部复杂的结构和相互作用,使其在新奇拓扑物态方面的探测比较受限。之后利用超冷原子体系易调控的优点与拓扑物态的结合,进而形成了超冷原子系统中人工拓扑物态的研究领域。短短几年,在该领域的研究已从拓扑绝缘体转向了半金属,而外尔半金属也于近期被实现和探测到。因此,本文将目光转向另一类特性更丰富的半金属,即拓扑节点线半金属。拓扑节点环是最简单的拓扑节点线,已在光学晶格中得到了广泛的研究。然而,在超冷原子系统中如何实现复杂的节点线结构(如节点链)仍然是一个关键的挑战。本文首次在超冷原子系统中提出了一个实验方案,用以实现和探测光学拉曼晶格中的拓扑节点链。具体来说,本文构建了一个三维光学拉曼晶格,该晶格可以产生次近邻的自旋轨道耦合,并在其能谱中包含拓扑节点链。特别的是,已实现的节点链受到镜像对称的保护,并且可以调整为多种形状,包括内部和外部节点链。此外,本文还证明了可以通过测量自旋极化的消除来检测节点链的形状。本文的研究为探索光学晶格中的拓扑节点链半金属相开辟了可能性。
其他文献
本文主要阐述了两方面的工作。一、利用暗磁光阱技术避免光助碰撞效应,减少原子损失,优化原子密度,最终实现玻色-爱因斯坦凝聚态;二、在BEC的基础上,实验研究了双拉曼相对相位操控相干跃迁的原理。文中使用两对远失谐拉曼光作用87Rb原子两个基态超精细能级|1,1?和|1,0?,精细调控两对拉曼光的相对相位,观测两个量子态的布局数随两对拉曼光相对相位的变化关系,通过控制两对拉曼光的相对相位差实现对拉曼耦合
趋化现象是细胞对化学物质的一种定向迁移策略.而这种与生俱来的能力使得生物在生存时学会趋利避害,适应环境.由此可见对趋化现象的深入研究具有非常重大的理论意义与实际价值.本文主要通过解的先验估计、常微分方程的比较原理、构造自由能量等方法研究以下带广义Logistic项的趋化系统(?)的解的全局存在性以及解的长时间行为.第一章,绪论.主要介绍趋化现象的研究背景以及研究现状,并最终引出该篇论文的主要研究内
植被恢复是矿区修复的重要手段,研究种群恢复动态特征对揭示半干旱区植被恢复过程中的演替规律和物种共存维持机制至关重要,同时对进一步优化植被生态恢复配置模式具有重要意义。本研究以半干旱区平朔露天煤矿生态恢复区不同恢复模式的刺槐群落为研究对象,通过样方法连续监测,研究刺槐(Robinia pseudoacacia)种群结构和群落伴生种的生态位及空间分布动态特征。主要研究结论如下:(1)刺槐种群初期栽植密
自旋噪声谱是一种探测热平衡态系统自旋特征的技术。起源于热原子系综的自旋探测,可以反应原子的自旋属性、能级结构、扩散特性及识别磁场等物理信息。应用自旋噪声谱技术于半导体材料、量子阱、量子点中研究自旋动力学过程,发展自旋电子学器件,有望促进自旋成为下一代基本量子信息单元,实现超越摩尔定律的存储技术。由于自旋噪声谱微扰动的探测特点,信噪比非常微弱。本论文主要基于含有10Torr氖气(Ne)和20 Tor
精密测量物理是物理学与计量学、信息科学以及各学科内部不同方向交叉、融合发展的前沿领域学科。它提供了新的测试手段和研究方法,揭示了一些新的物理现象及其规律,推动着新的精密测量器件、测量系统和测量概念的产生及学科前沿的发展。利用经典手段测量,其只能达到经典极限或称为标准量子极限精度。为了提高测量的精度和灵敏度,人们将目光投向了非经典光场,利用光场的压缩、量子纠缠等非经典特性,使得测量精度和灵敏度能超越
为完善跆拳道腿法技术体系架构,运用录像统计、访谈、赛场观察、逻辑分析等研究方法,对使用普通护具与电子护具的两届奥运会决赛的腿法技术使用情况进行对比分析,对跆拳道腿法技术创新与开发以及体系构建进行探索。研究认为:电子护具的使用和比赛规则的改变引发了腿法技术内容和使用形式的明显变化;跆拳道腿法技术的创新应该从穿戴电子脚套的感应点和符合生物力学规律的下肢不同运动方式来挖掘潜在的技术;跆拳道腿法技术体系由
随着传统技术测量灵敏度的不断提高,在未来复杂电磁环境下,雷达探测技术面临探测灵敏度受量子噪声限制以及易被杂波背景噪声干扰等难题,对环境态势感知提出了严峻的挑战。复杂的电磁环境要求雷达系统具有极强的抗干扰能力与抗杂波能力,以提升雷达的探测性能。传统雷达容易受背景噪声和损耗的影响,限制了雷达探测目标和环境感知的性能。量子雷达是一种在经典雷达的框架中引入量子技术的新型雷达探测技术,利用与经典电磁学不同的
在厄米量子力学领域中,我们假定量子系统处于封闭的孤立状态。在这样理想情况之下,系统不会发生耗散,其可观测物理算符为厄米算符,即具有实数本征值。而在实际情况中,量子系统总会与其所处的环境通过驱动和耗散、涨落过程相互耦合,同时会与环境有物质和能量的交换从而产生耗散,称之为量子开放系统。由于将环境对系统的干扰因素占比太大,厄米系统已经不足以去解决这些实际物理问题。尤其,在量子通信传输领域,环境对压缩光、
随着量子信息的快速发展,量子通信成为了科技界的研究热点。量子通信的远距离传输,需要在遥远的两个网络节点之间建立纠缠。目前长距离光量子网络的实现仍存在很大的挑战。2001年,段路明等人提出了一种基于原子系综的DLCZ(Duan-Lukin-Cirac-Zoller)量子中继方案,这个方案结合了原子系综中的量子记忆和纠缠交换,克服了光纤中的指数损耗问题,为长距离量子通信的研究奠定了基础。量子网络通常是
上世纪80年代,随着量子理论与方案的不断完善,量子信息做为一个新兴的研究领域得到了人们的关注。量子通讯作为量子信息最重要最核心的部分,其最吸引人们的特性在于可以实现物理层面的信息安全传输,而这种安全基于一种奇特的量子态---光量子纠缠态。量子存储是实现长距离量子通讯、构建光量子网络的关键技术,它要求能够对光量子态进行长时间的存储和高效的相干读出。目前,人们已经利用许多物理过程如电磁感应透明(Ele