论文部分内容阅读
闪速炉水淬镍渣是镍冶炼过程中产生的大宗固废,其中的TFe含量可达40wt%,因此研究镍渣中铁资源综合回收对镍渣的综合利用有重要意义。熔化特性与黏度直接影响熔渣中的化学反应速率、传质速率以及晶体的析出与长大速率,是熔融镍渣氧化过程中磁铁矿相生成的重要影响因素。镍渣成分复杂,元素种类较多,其主要渣系为CaO-SiO2-FeO-MgO四元体系,因此我们在研究该四元体系的基础上,探究实际镍渣熔化特性与黏度的变化规律和主控因素,为改质熔融氧化法提取镍渣中的铁资源提供理论基础和实验支撑。本文研究了碱度与FeO含量对CaO-SiO2-FeO-MgO渣系相图、熔化特性以及黏度的影响,并从微观结构演化上阐明了黏度的变化规律;研究了碱度对镍渣熔化温度与黏度的影响规律,获得了最佳的氧化条件;最后探究了改质镍渣熔融氧化过程中铁元素的富集行为。具体结论如下:(1)利用FactSage计算CaO-SiO2-FeO-MgO四元相图,分析结果表明:在空气气氛下,当碱度为0.381.50时,成分点位于尖晶石相初晶区,且随碱度的增加,尖晶石相初晶区面积先增大后减小;当FeO含量为6.0016.00 wt%时,成分点位于黄长石相初晶区,当FeO含量达到26.00 wt%时,成分点位于尖晶石相初晶区;FeO含量为26.0046.07 wt%时,随着FeO含量的增加,尖晶石相初晶区面积逐渐增大。(2)对CaO-SiO2-FeO-MgO四元渣系的熔化特性与黏度的变化规律的研究表明:当碱度为0.381.50时,随着碱度的增加,渣系的液相线温度、熔化温度和临界黏度温度均呈先减小后增大的趋势,当碱度为0.90时,液相线温度、软化温度、半球温度、流动温度和临界黏度温度均达最低,分别为1297℃、1244℃、1256℃、1274℃和1263℃;当FeO含量为6.0046.07 wt%时,随着FeO含量的增加,渣系的液相线温度、熔化温度和临界黏度温度均呈减小的趋势;随着碱度与FeO含量的增加,熔渣黏度逐渐减小,这主要是因为熔渣结构发生了由层状或网状结构向二聚体或单体结构转变,使得硅酸盐的聚合度不断减小。(3)对实际镍渣的熔化温度与黏度的研究表明:当碱度为0.381.50时,随着碱度的增加,镍渣的熔化温度与临界黏度温度呈先减小后增加的趋势,当碱度为0.90时,镍渣的熔化温度与临界黏度温度最低,软化温度、半球温度、流动温度和临界黏度温度分别为1275℃、1313℃、1406℃和1294℃,这些结果与(2)中的研究结果保持一致;改质镍渣熔融氧化过程中,适宜的氧化条件是温度14001500℃,碱度0.90。(4)对实际镍渣中磁铁矿相析出行为的研究表明:改质剂CaO的加入有助于镍渣中铁橄榄石与铁镁橄榄石的分解;改质剂CaO与氧气同时存在的条件下,可以实现镍渣中的铁组分向磁铁矿相中的迁移与富集;尖晶石中主要物相为磁铁矿相(Fe3O4)。碱度为0.90的改质氧化镍渣在非平衡凝固过程中,磁铁矿相在1455℃时开始析出,010 s时磁铁矿相晶粒的长大速率为1.20μm/s,明显高于1022 s时磁铁矿相晶粒的长大速率0.16μm/s,22 s后磁铁矿相的晶粒尺寸基本保持不变,呈颗粒状。