方形孔径平面微透镜阵列的泰伯效应及莫尔显示研究

被引量 : 1次 | 上传用户:bvf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
信息化时代,人们不仅需要更多更新的器件去获取、控制、传输信息,而且对信息的获取速度、信息质量、信息的多样化提出更高的要求。要达到这些目的,需要各种光电器件控制光的行为,例如成像、聚焦、耦合、分束、调制等行为。微透镜阵列作为一种重要的微光学元器件,被应用于各种领域,如并行共焦成像系统,也是波前测量系统的关键组件。方形孔径平面微透镜阵列是一种充分考虑受光面积和填充系数的光器件,除了具备常规的聚焦、成像、耦合等功能,对其更深层次光学特性的挖掘也是研究的重要方面。当单色平行光垂直入射到周期性结构的透明物体(
其他文献
本文研究了化学共沉淀法制备锰锌铁氧体的基本工艺,尝试用废弃氧化铁皮替代硫酸亚铁制备铁氧体材料,并对锰锌铁氧体进行了化学掺杂,研究了掺杂元素(Co和Cu)对锰锌铁氧体性能的影响。为了改善铁氧体材料的温度稳定性,对锰锌铁氧体Mn0 .4 Zn0.6Fe2O4进行Co元素掺杂,并制备了环状样品,测量环状样品的初始磁导率随温度的变化(即μi–T曲线),并利用μi–T曲线计算了温度系数。研究发现,随着Co含
本文中,作者利用声波奇异介质设计了两种新型的声学器件:二维声波超散射体和能对外部物体实现隐身的新型二维声波隐身衣。这两种声学器件所实现的功能都是以往各类声学器件所不具有的,而且能够找到很有趣的实际应用。本文工作基于的声波奇异介质(Acoustic Metamaterial)是材料科学领域的较新成果,之所以“奇异”,就在于它实际上是一种人工调控的弹性复合结构,而该结构可以实现天然材料不具有的“奇异”
太阳能的有效利用是解决环境和能源问题的主要途径之一。其中太阳能光伏利用是当前发展最快最具活力的研究领域。因具有降低太阳能发电成本的潜力,聚光太阳光伏系统一直广受研