论文部分内容阅读
碳化硅颗粒增强铝基复合材料(SiCp/Al)是以铝或铝合金为基体,以碳化硅脆硬颗粒为增强相的一种金属基复合材料,具有高比强度、高比刚度、低密度和优越的热学性能,在航空航天、电子通讯、汽车等领域均具有广阔的应用前景。但是,高强度增强相SiC颗粒的加入使得SiCp/Al复合材料的切削加工变的极为困难,并会加速刀具磨损,降低工件加工精度,严重限制了该材料的广泛应用。其中,在SiCp/Al复合材料切削过程中,脆硬颗粒会断裂、颗粒-基体界面会脱粘,这两种损伤的出现给SiCp/Al复合材料切削加工带来了挑战。因此,本文研究了颗粒损伤对SiCp/Al复合材料切削加工的影响,通过实验观察和理论分析对与SiCp/Al复合材料去除过程密切相关的切屑形成、动态压缩变形、切削力和切削温度等进行了研究。(1)SiCp/Al复合材料切削的颗粒损伤及切屑形成机理研究。对不同颗粒含量和尺寸的SiCp/Al复合材料在不同切削条件下进行了直角切削实验和快速落刀实验,并对获取的切屑、切屑根部和切屑断面进行了微观观察,研究了颗粒断裂和界面脱粘的形成机理,分析了颗粒损伤(颗粒断裂和界面脱粘)对切屑中脆性断裂的影响,揭示了 SiCp/Al复合材料的切屑形成机理。结果显示,位错塞积引起的应力集中导致了界面脱粘,应力集中、刀刃挤压、局部颗粒聚集和颗粒连成网状结构引起了颗粒断裂;颗粒损伤会促进切屑中的脆性裂纹扩展,导致切屑锯齿化程度增强。发现SiCp/Al复合材料切削过程中发生了三种剪切区变形模式,分别是塑性变形、不完全脆性断裂和完全脆性断裂,这三种变形模式的相互转变导致了切屑形态的演变。然后,依据SiCp/Al复合材料剪切区的三种变形模式分别建立了塑性变形模式下、不完全脆性断裂模式下和完全脆性断裂模式下的切屑形成物理模型。(2)考虑颗粒损伤影响的SiCp/Al复合材料动态本构模型的建立。采用分离式霍普金森压杆技术,在不同应变率和温度条件下,对不同颗粒含量和尺寸的SiCp/Al复合材料进行了动态压缩实验,研究了颗粒损伤和热软化对SiCp/Al复合材料动态力学性能的影响。基于Eshelby等效夹杂理论和基体材料的塑性动态本构关系,建立了考虑颗粒损伤影响的SiCp/Al复合材料动态本构模型,预测了 SiCp/Al复合材料的动态力学性能。结果显示,考虑颗粒损伤影响的SiCp/Al复合材料动态本构模型在室温下能较好地预测SiCp/Al复合材料的应力-应变关系,而随着温度升高预测结果的平均误差却明显增大。为进一步提升高温下的预测精度,对考虑颗粒损伤影响的SiCp/Al复合材料动态本构模型进行了改进,分析了颗粒强化与热软化之间的相互影响,建立了 SiCp/Al复合材料颗粒-热耦合动态本构模型,实现了不同温度下SiCp/Al复合材料动态力学性能的精准预测。最后,研究了颗粒损伤对SiCp/Al复合材料动态力学性能的影响,发现随颗粒含量和尺寸的增大,颗粒断裂和界面脱粘的几率增大,从而减弱了颗粒的强化作用,导致流动应力随颗粒含量的增大先升后减,随颗粒尺寸的增大而减小。(3)SiCp/Al复合材料切削力和切削温度的建模研究。通过分析SiCp/Al复合材料的切屑形成过程,并结合考虑颗粒损伤影响的SiCp/Al复合材料动态本构模型,建立了考虑颗粒影响的SiCp/Al复合材料切削力模型;基于Shaw的切削温度解析模型,并通过考虑颗粒对SiCp/Al复合材料切削热产生的影响,建立了考虑颗粒影响的SiCp/Al复合材料切削温度解析模型;最后,将切削力模型与切削温度解析模型相结合,提出了SiCp/Al复合材料切削力和切削温度的耦合预测方法,预测了加工SiCp/Al复合材料时的切削力和切削温度,并将获得的预测值与实验值进行了对比,发现所提出的模型考虑颗粒影响后可更精准地实现切削力和温度的预测。最终,基于SiCp/Al复合材料切削力模型和切削温度解析模型,研究了增强颗粒对切削力和切削温度的影响,结果显示:随颗粒含量增加,切削力先增大后减小,切削温度降低;随颗粒尺寸增大,切削力减小,切削温度降低。(4)SiCp/Al复合材料剪切区颗粒损伤度的建模及其对切削加工的影响研究。根据Eshelby等效夹杂理论和Weibull统计分布获得了剪切区的颗粒损伤几率,根据刀具与颗粒的接触分析获得了切削刃区域的颗粒损伤几率,并将两种颗粒损伤几率相加获得了SiCp/Al复合材料切削的剪切区颗粒损伤度。通过对切屑根部及切屑纵截面的颗粒损伤状态进行分析,验证了颗粒损伤度的有效性。研究了 SiCp/Al复合材料剪切区颗粒损伤对切削力、切削温度和已加工表面粗糙度的影响,并为SiCp/Al复合材料切削参数优化提供了一定指导。结果显示,SiCp/Al复合材料的颗粒含量增加或尺寸增大,剪切区颗粒损伤度增加,进而导致切削力随颗粒含量的增加而先升后降,随颗粒尺寸的增大而减小。提高切削速度能够减小中、低体分比SiCp/Al复合材料的切削力;通过降低切削速度使剪切区颗粒损伤增强,也可以减小40vol.%SiC-30μm复合材料的切削力。切削SiCp/Al复合材料的颗粒尺寸增大,切削力受颗粒损伤影响会减小,进而导致切削温度降低。随剪切区颗粒损伤的增强,SiCp/Al复合材料的已加工表面质量会降低。切削高体分比或大颗粒的SiCp/Al复合材料时,剪切区颗粒损伤度均会保持较大值,使已加工表面质量相对较差。增大切削速度或切削厚度可使剪切区颗粒损伤度降低,有助于改善SiCp/Al复合材料的已加工表面质量。