论文部分内容阅读
聚己内酯(PCL)材料因具有良好的生物可降解性和生物相容性、无毒、环境友好等优点,已被广泛应用于包装、生物医学、农林业等领域。然而,纯PCL力学强度低、热稳定性差等方面的不足,极大地制约了其在上述领域的进一步发展。SiO2纳米粒子作为一种刚性无机纳米填料,兼具来源广泛、价格低廉、无毒无害、热稳定性高等特点,适合于对PCL进行填充改性以强化材料性能。但纳米SiO2在PCL基体中容易发生团聚且与PCL基体的界面结合能力弱,往往导致复合材料的性能并不理想。纳米SiO2表面富含硅羟基,据此对其进行表面改性,可以有效改善纳米SiO2分散性以及与聚合物基体的界面相容性。本文利用挤出机熔融共混过程中的高温、强剪切力作用致使PCL共价接枝到SiO2纳米粒子表面,探索出一种成本低、操作简单、可批量化实现纳米SiO2表面改性的方法。在此基础上,重点研究了改性纳米SiO2对PCL微观结构、力学性能、结晶性能以及热稳定性能的作用机理和影响规律。首先,基于熔融共混和高速离心分离工艺过程,采用正交实验获得制备改性纳米SiO2的最优工艺方案。进而利用热重分析仪、傅里叶变换红外光谱、X射线光电子能谱等一系列表征手段,对PCL共价接枝纳米SiO2的反应机理进行深入研究。研究结果表明:(1)在熔融共混的高温、强剪切力作用下,PCL以共价键的形式接枝到了纳米SiO2表面,从而实现纳米粒子的表面改性。制备改性纳米SiO2的最佳工艺条件为熔融共混温度120℃,熔融共混时间20 min和螺杆转速40 rpm;(2)熔融共混过程中PCL共价接枝纳米SiO2的反应机理主要包括硅羟基与PCL酯基间的酯交换反应、热降解生成的末端带羧基PCL分子链与硅羟基的酯化反应以及水解生成的末端带羟基PCL分子链与硅羟基的脱水缩合反应。然后,分别以改性前后的纳米SiO2作为填料,通过溶液共混、模压成型制备出不同粒子含量(0.5-3 wt%)的PCL纳米复合材料。借助扫描电子显微镜、立式电子万能试验机、动态热力学分析仪、冲击试验机、差示扫描量热仪,热重分析仪等多种测试手段,比较研究了改性前后纳米SiO2对PCL微观结构、力学性能、结晶性能以及热稳定性能的影响机理和规律。研究结果显示:(1)相同粒子含量下,改性纳米SiO2在PCL基体中具有更好的分散性,团聚体尺寸较小,且高含量下这种现象更为明显;(2)低含量下(0.5 wt%),具有更好分散性及界面结合能力的改性纳米SiO2对PCL的增强增韧效果最佳,相比于纯PCL,PCL/改性纳米SiO2复合材料的拉伸强度、断裂伸长率以及冲击强度分别提升了18.0%、17.0%和19.6%。随着填料含量增加,团聚作用使得纳米粒子对PCL的增强增韧作用逐渐弱化;(3)改性前后纳米SiO2均能提高PCL的储能模量,但改性纳米SiO2的强化效果更为显著:(4)在异相成核及阻碍PCL分子链链段运动的双重作用下,PCL/改性纳米SiO2复合材料的结晶度随粒子含量增加呈现先增大后减小的趋势;(5)改性纳米SiO2能有效改善PCL的热稳定性,其复合材料的热稳定性随着粒子含量的增加而不断提高。